HyperAI

Graph Regression On Lipophilicity

Métriques

RMSE@80%Train

Résultats

Résultats de performance de divers modèles sur ce benchmark

Tableau comparatif
Nom du modèleRMSE@80%Train
censnet-convolution-with-edge-node-switching1.16
censnet-convolution-with-edge-node-switching0.93
molecular-graph-convolutions-moving-beyond-
how-powerful-are-graph-neural-networks-
masked-attention-is-all-you-need-for-graphs-
molecular-property-prediction-a-multilevel-
simplifying-graph-convolutional-networks-
optimal-transport-graph-neural-networks-
molecular-property-prediction-a-multilevel-
graph-attention-networks-
attention-based-graph-neural-network-for-semi-
dropgnn-random-dropouts-increase-the-
graph-neural-networks-with-convolutional-arma-
recipe-for-a-general-powerful-scalable-graph-
molecule-property-prediction-based-on-spatial-
principal-neighbourhood-aggregation-for-graph-
neural-message-passing-for-quantum-chemistry-
semi-supervised-classification-with-graph-
pure-transformers-are-powerful-graph-learners-
convolutional-networks-on-graphs-for-learning-
censnet-convolution-with-edge-node-switching1.15
how-attentive-are-graph-attention-networks-
do-transformers-really-perform-bad-for-graph-