HyperAIHyperAI

Graph Regression On F2

Métriques

R2
RMSE

Résultats

Résultats de performance de divers modèles sur ce benchmark

Nom du modèle
R2
RMSE
Paper TitleRepository
TokenGT0.872±0.0000.363±0.872Pure Transformers are Powerful Graph Learners-
GraphormerOOMOOMDo Transformers Really Perform Bad for Graph Representation?-
GCN0.878±0.0000.355±0.878Semi-Supervised Classification with Graph Convolutional Networks-
GIN0.887±0.0000.342±0.887How Powerful are Graph Neural Networks?-
ESA (Edge set attention, no positional encodings)0.891±0.0000.335±0.891An end-to-end attention-based approach for learning on graphs-
PNA0.891±0.0000.336±0.891Principal Neighbourhood Aggregation for Graph Nets-
DropGIN0.886±0.0000.343±0.886DropGNN: Random Dropouts Increase the Expressiveness of Graph Neural Networks-
GAT0.886±0.0000.343±0.886Graph Attention Networks-
GATv20.885±0.0000.344±0.885How Attentive are Graph Attention Networks?-
0 of 9 row(s) selected.
Graph Regression On F2 | SOTA | HyperAI