Graph Property Prediction On Ogbg Ppa
Métriques
Ext. data
Number of params
Test Accuracy
Validation Accuracy
Résultats
Résultats de performance de divers modèles sur ce benchmark
Tableau comparatif
Nom du modèle | Ext. data | Number of params | Test Accuracy | Validation Accuracy |
---|---|---|---|---|
breaking-the-expressive-bottlenecks-of-graph-1 | No | 1369397 | 0.7976 ± 0.0072 | 0.7518 ± 0.0080 |
semi-supervised-classification-with-graph | No | 479437 | 0.6839 ± 0.0084 | 0.6497 ± 0.0034 |
unlocking-the-potential-of-classic-gnns-for | No | 5547557 | 0.8258 ± 0.0055 | 0.7815 ± 0.0043 |
unlocking-the-potential-of-classic-gnns-for | No | 5549605 | 0.8077 ± 0.0041 | 0.7586 ± 0.0032 |
Modèle 5 | No | 4006704 | 0.7432 ± 0.0033 | 0.6989 ± 0.0037 |
deepergcn-all-you-need-to-train-deeper-gcns | No | 2336421 | 0.7712 ± 0.0071 | 0.7313 ± 0.0078 |
how-powerful-are-graph-neural-networks | No | 3288042 | 0.7037 ± 0.0107 | 0.6678 ± 0.0105 |
flag-adversarial-data-augmentation-for-graph-1 | No | 2336421 | 0.7752 ± 0.0069 | 0.7484 ± 0.0052 |
flag-adversarial-data-augmentation-for-graph-1 | No | 1836942 | 0.6905 ± 0.0092 | 0.6465 ± 0.0070 |
Modèle 10 | No | 16346166 | 0.8201 ± 0.0019 | 0.7720 ± 0.0023 |
unlocking-the-potential-of-classic-gnns-for | No | 8173605 | 0.8107 ± 0.0053 | 0.7786 ± 0.0095 |
Modèle 12 | No | 3717160 | 0.7828 ± 0.0024 | 0.7523 ± 0.0028 |
flag-adversarial-data-augmentation-for-graph-1 | No | 1930537 | 0.6944 ± 0.0052 | 0.6638 ± 0.0055 |
flag-adversarial-data-augmentation-for-graph-1 | No | 3288042 | 0.7245 ± 0.0114 | 0.6789 ± 0.0079 |
how-powerful-are-graph-neural-networks | No | 1836942 | 0.6892 ± 0.0100 | 0.6562 ± 0.0107 |
Modèle 16 | No | 3758642 | 0.8140 ± 0.0028 | 0.7811 ± 0.0012 |
semi-supervised-classification-with-graph | No | 1930537 | 0.6857 ± 0.0061 | 0.6511 ± 0.0048 |
recipe-for-a-general-powerful-scalable-graph | No | 3434533 | 0.8015 | 0.7556 ± 0.0027 |