HyperAI

Graph Property Prediction On Ogbg Ppa

Métriques

Ext. data
Number of params
Test Accuracy
Validation Accuracy

Résultats

Résultats de performance de divers modèles sur ce benchmark

Tableau comparatif
Nom du modèleExt. dataNumber of paramsTest AccuracyValidation Accuracy
breaking-the-expressive-bottlenecks-of-graph-1No13693970.7976 ± 0.00720.7518 ± 0.0080
semi-supervised-classification-with-graphNo4794370.6839 ± 0.00840.6497 ± 0.0034
unlocking-the-potential-of-classic-gnns-forNo55475570.8258 ± 0.00550.7815 ± 0.0043
unlocking-the-potential-of-classic-gnns-forNo55496050.8077 ± 0.00410.7586 ± 0.0032
Modèle 5No40067040.7432 ± 0.00330.6989 ± 0.0037
deepergcn-all-you-need-to-train-deeper-gcnsNo23364210.7712 ± 0.00710.7313 ± 0.0078
how-powerful-are-graph-neural-networksNo32880420.7037 ± 0.01070.6678 ± 0.0105
flag-adversarial-data-augmentation-for-graph-1No23364210.7752 ± 0.00690.7484 ± 0.0052
flag-adversarial-data-augmentation-for-graph-1No18369420.6905 ± 0.00920.6465 ± 0.0070
Modèle 10No163461660.8201 ± 0.00190.7720 ± 0.0023
unlocking-the-potential-of-classic-gnns-forNo81736050.8107 ± 0.00530.7786 ± 0.0095
Modèle 12No37171600.7828 ± 0.00240.7523 ± 0.0028
flag-adversarial-data-augmentation-for-graph-1No19305370.6944 ± 0.00520.6638 ± 0.0055
flag-adversarial-data-augmentation-for-graph-1No32880420.7245 ± 0.01140.6789 ± 0.0079
how-powerful-are-graph-neural-networksNo18369420.6892 ± 0.01000.6562 ± 0.0107
Modèle 16No37586420.8140 ± 0.00280.7811 ± 0.0012
semi-supervised-classification-with-graphNo19305370.6857 ± 0.00610.6511 ± 0.0048
recipe-for-a-general-powerful-scalable-graphNo34345330.80150.7556 ± 0.0027