HyperAIHyperAI

Graph Property Prediction On Ogbg Ppa

Métriques

Ext. data
Number of params
Test Accuracy
Validation Accuracy

Résultats

Résultats de performance de divers modèles sur ce benchmark

Nom du modèle
Ext. data
Number of params
Test Accuracy
Validation Accuracy
Paper TitleRepository
ExpCNo13693970.7976 ± 0.00720.7518 ± 0.0080Breaking the Expressive Bottlenecks of Graph Neural Networks-
GCNNo4794370.6839 ± 0.00840.6497 ± 0.0034Semi-Supervised Classification with Graph Convolutional Networks-
GatedGCN+No55475570.8258 ± 0.00550.7815 ± 0.0043Can Classic GNNs Be Strong Baselines for Graph-level Tasks? Simple Architectures Meet Excellence-
GCN+No55496050.8077 ± 0.00410.7586 ± 0.0032Can Classic GNNs Be Strong Baselines for Graph-level Tasks? Simple Architectures Meet Excellence-
GC-T+MCL(6.0)No40067040.7432 ± 0.00330.6989 ± 0.0037--
DeeperGCNNo23364210.7712 ± 0.00710.7313 ± 0.0078DeeperGCN: All You Need to Train Deeper GCNs-
GIN+virtual nodeNo32880420.7037 ± 0.01070.6678 ± 0.0105How Powerful are Graph Neural Networks?-
DeeperGCN+FLAGNo23364210.7752 ± 0.00690.7484 ± 0.0052Robust Optimization as Data Augmentation for Large-scale Graphs-
GIN+FLAGNo18369420.6905 ± 0.00920.6465 ± 0.0070Robust Optimization as Data Augmentation for Large-scale Graphs-
PAS+F2GNNNo163461660.8201 ± 0.00190.7720 ± 0.0023--
GIN+No81736050.8107 ± 0.00530.7786 ± 0.0095Can Classic GNNs Be Strong Baselines for Graph-level Tasks? Simple Architectures Meet Excellence-
PASNo37171600.7828 ± 0.00240.7523 ± 0.0028--
GCN+virtual node+FLAGNo19305370.6944 ± 0.00520.6638 ± 0.0055Robust Optimization as Data Augmentation for Large-scale Graphs-
GIN+virtual node+FLAGNo32880420.7245 ± 0.01140.6789 ± 0.0079Robust Optimization as Data Augmentation for Large-scale Graphs-
GINNo18369420.6892 ± 0.01000.6562 ± 0.0107How Powerful are Graph Neural Networks?-
ExpC*+bag of tricksNo37586420.8140 ± 0.00280.7811 ± 0.0012--
GCN+virtual nodeNo19305370.6857 ± 0.00610.6511 ± 0.0048Semi-Supervised Classification with Graph Convolutional Networks-
GPSNo34345330.80150.7556 ± 0.0027Recipe for a General, Powerful, Scalable Graph Transformer-
0 of 18 row(s) selected.
Graph Property Prediction On Ogbg Ppa | SOTA | HyperAI