Command Palette
Search for a command to run...
Graph Property Prediction On Ogbg Code2
Métriques
Ext. data
Number of params
Test F1 score
Validation F1 score
Résultats
Résultats de performance de divers modèles sur ce benchmark
| Paper Title | |||||
|---|---|---|---|---|---|
| SAT++ with Magnetic Laplacian | No | 14378069 | 0.2222 ± 0.0010 | 0.2044 ± 0.0020 | Transformers Meet Directed Graphs |
| SAT++ with Magnetic Laplacian | No | 14378069 | 0.2222 ± 0.0032 | 0.2044 ± 0.0020 | - |
| DAGformer | No | 14952882 | 0.2018 ± 0.0021 | 0.1846 ± 0.0010 | - |
| SAT | No | 15734000 | 0.1937 ± 0.0028 | 0.1773 ± 0.0023 | Structure-Aware Transformer for Graph Representation Learning |
| GatedGCN+ | - | - | 0.1896 ± 0.0024 | 0.1742 ± 0.0027 | Can Classic GNNs Be Strong Baselines for Graph-level Tasks? Simple Architectures Meet Excellence |
| GPS | No | 12454066 | 0.1894 | 0.1739 ± 0.001 | Recipe for a General, Powerful, Scalable Graph Transformer |
| GraphTrans (GCN-Virtual) | No | 9053246 | 0.1830 ± 0.0024 | 0.1661 ± 0.0012 | - |
| GMAN+bag of tricks | No | 63684290 | 0.1770 ± 0.0012 | 0.1631 ± 0.0090 | - |
| DAGNN | No | 35246814 | 0.1751 ± 0.0049 | 0.1607 ± 0.0040 | - |
| GraphTrans (GCN) | No | 7563746 | 0.1751 ± 0.0015 | 0.1599 ± 0.0009 | - |
| DAGNN | - | - | 0.1751 ± 0.0049 | 0.1607 ± 0.0040 | Directed Acyclic Graph Neural Networks |
| EGC-M (No Edge Features) | No | 10986002 | 0.1595 ± 0.0019 | 0.1464 ± 0.0021 | Do We Need Anisotropic Graph Neural Networks? |
| GCN+virtual node | No | 12484310 | 0.1595 ± 0.0018 | 0.1461 ± 0.0013 | Semi-Supervised Classification with Graph Convolutional Networks |
| GIN+virtual node | No | 13841815 | 0.1581 ± 0.0026 | 0.1439 ± 0.0020 | How Powerful are Graph Neural Networks? |
| PNA (No Edge Features) | No | 10992050 | 0.1570 ± 0.0032 | 0.1453 ± 0.0025 | Do We Need Anisotropic Graph Neural Networks? |
| GAT | No | 11030210 | 0.1569 ± 0.0010 | 0.1442 ± 0.0017 | Graph Attention Networks |
| MPNN-Max (No Edge Features) | No | 10971506 | 0.1552 ± 0.0022 | 0.1441 ± 0.0016 | Do We Need Anisotropic Graph Neural Networks? |
| EGC-S (No Edge Features) | No | 11156530 | 0.1528 ± 0.0025 | 0.1427 ± 0.0020 | Do We Need Anisotropic Graph Neural Networks? |
| GCN | No | 11033210 | 0.1507 ± 0.0018 | 0.1399 ± 0.0017 | Semi-Supervised Classification with Graph Convolutional Networks |
| GIN | No | 12390715 | 0.1495 ± 0.0023 | 0.1376 ± 0.0016 | How Powerful are Graph Neural Networks? |
0 of 21 row(s) selected.