Graph Property Prediction On Ogbg Code2
Métriques
Ext. data
Number of params
Test F1 score
Validation F1 score
Résultats
Résultats de performance de divers modèles sur ce benchmark
Tableau comparatif
Nom du modèle | Ext. data | Number of params | Test F1 score | Validation F1 score |
---|---|---|---|---|
semi-supervised-classification-with-graph | No | 11033210 | 0.1507 ± 0.0018 | 0.1399 ± 0.0017 |
graph-attention-networks | No | 11030210 | 0.1569 ± 0.0010 | 0.1442 ± 0.0017 |
adaptive-filters-and-aggregator-fusion-for | No | 10986002 | 0.1595 ± 0.0019 | 0.1464 ± 0.0021 |
structure-aware-transformer-for-graph | No | 15734000 | 0.1937 ± 0.0028 | 0.1773 ± 0.0023 |
Modèle 5 | No | 35246814 | 0.1751 ± 0.0049 | 0.1607 ± 0.0040 |
Modèle 6 | No | 63684290 | 0.1770 ± 0.0012 | 0.1631 ± 0.0090 |
adaptive-filters-and-aggregator-fusion-for | No | 10971506 | 0.1552 ± 0.0022 | 0.1441 ± 0.0016 |
recipe-for-a-general-powerful-scalable-graph | No | 12454066 | 0.1894 | 0.1739 ± 0.001 |
hierarchical-graph-representation-learning | No | 10095826 | 0.1401 ± 0.0012 | 0.1405 ± 0.0012 |
transformers-meet-directed-graphs | No | 14378069 | 0.2222 ± 0.0010 | 0.2044 ± 0.0020 |
Modèle 11 | No | 9053246 | 0.1830 ± 0.0024 | 0.1661 ± 0.0012 |
adaptive-filters-and-aggregator-fusion-for | No | 10992050 | 0.1570 ± 0.0032 | 0.1453 ± 0.0025 |
how-powerful-are-graph-neural-networks | No | 13841815 | 0.1581 ± 0.0026 | 0.1439 ± 0.0020 |
Modèle 14 | No | 14378069 | 0.2222 ± 0.0032 | 0.2044 ± 0.0020 |
how-powerful-are-graph-neural-networks | No | 12390715 | 0.1495 ± 0.0023 | 0.1376 ± 0.0016 |
adaptive-filters-and-aggregator-fusion-for | No | 11156530 | 0.1528 ± 0.0025 | 0.1427 ± 0.0020 |
Modèle 17 | No | 14952882 | 0.2018 ± 0.0021 | 0.1846 ± 0.0010 |
Modèle 18 | No | 7563746 | 0.1751 ± 0.0015 | 0.1599 ± 0.0009 |
semi-supervised-classification-with-graph | No | 12484310 | 0.1595 ± 0.0018 | 0.1461 ± 0.0013 |
directed-acyclic-graph-neural-networks-1 | - | - | 0.1751 ± 0.0049 | 0.1607 ± 0.0040 |
unlocking-the-potential-of-classic-gnns-for | - | - | 0.1896 ± 0.0024 | 0.1742 ± 0.0027 |