Graph Classification On Upfd Pol
Métriques
Accuracy (%)
Résultats
Résultats de performance de divers modèles sur ce benchmark
Nom du modèle | Accuracy (%) | Paper Title | Repository |
---|---|---|---|
HGFND | 91.13± 1.89 | Nothing Stands Alone: Relational Fake News Detection with Hypergraph Neural Networks | - |
GNNCL | 60.18 | User Preference-aware Fake News Detection | |
GCNFN | 83.71 | User Preference-aware Fake News Detection | |
UPFD-GAT | 82.81 | User Preference-aware Fake News Detection | |
UPFD-BiGCN | 83.26 | User Preference-aware Fake News Detection | |
UPFD-GCNFN | 82.35 | User Preference-aware Fake News Detection | |
UPFD-GCN | 81.90 | User Preference-aware Fake News Detection | |
UPFD-SAGE | 84.62 | User Preference-aware Fake News Detection |
0 of 8 row(s) selected.