HyperAI

Graph Classification On Nci109

Métriques

Accuracy

Résultats

Résultats de performance de divers modèles sur ce benchmark

Tableau comparatif
Nom du modèleAccuracy
self-attention-graph-pooling67.86
gaussian-induced-convolution-for-graphs82.86
spectral-multigraph-networks-for-discovering82.0
principal-neighbourhood-aggregation-for-graph83.382±1.045
learning-metrics-for-persistence-based-287.3
recipe-for-a-general-powerful-scalable-graph81.256±0.501
graph2vec-learning-distributed74.26
cell-attention-networks83.6
graph-attention-networks82.560±0.601
dropgnn-random-dropouts-increase-the83.961±1.141
how-attentive-are-graph-attention-networks83.092±0.764
hierarchical-graph-pooling-with-structure80.67
pre-training-graph-neural-networks-on77.54±1.51
graph-isomorphism-unet77
generalizing-topological-graph-neural84.0
subgraph-networks-with-application-to71.06
transitivity-preserving-graph-representation75.45±1.26
propagation-kernels-efficient-graph-kernels83.5
semi-supervised-classification-with-graph83.140±1.248
asap-adaptive-structure-aware-pooling-for70.07
unsupervised-inductive-whole-graph-embedding69.17
cin-enhancing-topological-message-passing84.5
masked-attention-is-all-you-need-for-graphs84.976±0.551
self-attention-graph-pooling74.06
graph-convolutional-networks-with74.90
provably-powerful-graph-networks82.23
pure-transformers-are-powerful-graph-learners72.077±1.883
on-valid-optimal-assignment-kernels-and86.3
relational-reasoning-over-spatial-temporal75.85
when-work-matters-transforming-classical80.66
capsule-neural-networks-for-graph58.04
do-transformers-really-perform-bad-for-graph74.879±1.183
improving-spectral-graph-convolution-for83.62
how-powerful-are-graph-neural-networks84.155±0.812
unsupervised-inductive-whole-graph-embedding74.48
towards-a-practical-k-dimensional-weisfeiler84.7
dynamic-edge-conditioned-filters-in82.14