HyperAI
HyperAI
Accueil
Actualités
Articles de recherche
Tutoriels
Ensembles de données
Wiki
SOTA
Modèles LLM
Classement GPU
Événements
Recherche
À propos
Français
HyperAI
HyperAI
Toggle sidebar
Rechercher sur le site...
⌘
K
Rechercher sur le site...
⌘
K
Accueil
SOTA
Classification de graphes
Graph Classification On Nci109
Graph Classification On Nci109
Métriques
Accuracy
Résultats
Résultats de performance de divers modèles sur ce benchmark
Columns
Nom du modèle
Accuracy
Paper Title
Repository
SAGPool_h
67.86
Self-Attention Graph Pooling
GIC
82.86
Gaussian-Induced Convolution for Graphs
-
Multigraph ChebNet
82.0
Spectral Multigraph Networks for Discovering and Fusing Relationships in Molecules
PNA
83.382±1.045
Principal Neighbourhood Aggregation for Graph Nets
WKPI-kcenters
87.3
Learning metrics for persistence-based summaries and applications for graph classification
GraphGPS
81.256±0.501
Recipe for a General, Powerful, Scalable Graph Transformer
Graph2Vec
74.26
graph2vec: Learning Distributed Representations of Graphs
CAN
83.6
Cell Attention Networks
GAT
82.560±0.601
Graph Attention Networks
DropGIN
83.961±1.141
DropGNN: Random Dropouts Increase the Expressiveness of Graph Neural Networks
GATv2
83.092±0.764
How Attentive are Graph Attention Networks?
HGP-SL
80.67
Hierarchical Graph Pooling with Structure Learning
S-CGIB
77.54±1.51
Pre-training Graph Neural Networks on Molecules by Using Subgraph-Conditioned Graph Information Bottleneck
-
GIUNet
77
Graph isomorphism UNet
-
PIN
84.0
Weisfeiler and Lehman Go Paths: Learning Topological Features via Path Complexes
-
Deep WL SGN(0,1,2)
71.06
Subgraph Networks with Application to Structural Feature Space Expansion
-
UGT
75.45±1.26
Transitivity-Preserving Graph Representation Learning for Bridging Local Connectivity and Role-based Similarity
Propagation kernels (pk)
83.5
Propagation kernels: efficient graph kernels from propagated information
-
GCN
83.140±1.248
Semi-Supervised Classification with Graph Convolutional Networks
ASAP
70.07
ASAP: Adaptive Structure Aware Pooling for Learning Hierarchical Graph Representations
0 of 37 row(s) selected.
Previous
Next