HyperAI

Fine Grained Image Classification On Oxford

Métriques

Accuracy
FLOPS
PARAMS

Résultats

Résultats de performance de divers modèles sur ce benchmark

Nom du modèle
Accuracy
FLOPS
PARAMS
Paper TitleRepository
ResNet50 (A1)97.9%4.124MResNet strikes back: An improved training procedure in timm
Grafit (RegNet-8GF)99.1%--Grafit: Learning fine-grained image representations with coarse labels-
AutoFormer-S | 384---AutoFormer: Searching Transformers for Visual Recognition
Wide-ResNet-101 (Spinal FC)99.30%--SpinalNet: Deep Neural Network with Gradual Input
DenseNet-20198.29--A Comprehensive Study on Torchvision Pre-trained Models for Fine-grained Inter-species Classification-
PC Bilinear CNN93.65%--Pairwise Confusion for Fine-Grained Visual Classification
ResMLP-1297.4%--ResMLP: Feedforward networks for image classification with data-efficient training
NAT-M398.1250M3.7MNeural Architecture Transfer
µ2Net (ViT-L/16)99.61%--An Evolutionary Approach to Dynamic Introduction of Tasks in Large-scale Multitask Learning Systems
TNT-B99.0%-65.6MTransformer in Transformer
DenseNet-201(Spinal FC)98.36--A Comprehensive Study on Torchvision Pre-trained Models for Fine-grained Inter-species Classification-
NAT-M1-152M3.3MNeural Architecture Transfer
BiT-M (ResNet)99.30%--Big Transfer (BiT): General Visual Representation Learning
ResMLP-2497.9%--ResMLP: Feedforward networks for image classification with data-efficient training
CCT-14/7x2-15G22.5MEscaping the Big Data Paradigm with Compact Transformers
AutoAugment95.36%--AutoAugment: Learning Augmentation Policies from Data
IELT99.64%--Fine-Grained Visual Classification via Internal Ensemble Learning Transformer
NAT-M297.9195M3.4MNeural Architecture Transfer
FixInceptionResNet-V295.7%--Fixing the train-test resolution discrepancy
Assemble-ResNet98.9%--Compounding the Performance Improvements of Assembled Techniques in a Convolutional Neural Network
0 of 25 row(s) selected.