Fine Grained Image Classification On Foodx
Métriques
Accuracy (%)
Résultats
Résultats de performance de divers modèles sur ce benchmark
Nom du modèle | Accuracy (%) | Paper Title | Repository |
---|---|---|---|
VOLO-D5 | 79.15 | Learning Multi-Subset of Classes for Fine-Grained Food Recognition | |
CSWin-L | 79.90 | Learning Multi-Subset of Classes for Fine-Grained Food Recognition |
0 of 2 row(s) selected.