HyperAI
Accueil
Actualités
Articles de recherche récents
Tutoriels
Ensembles de données
Wiki
SOTA
Modèles LLM
Classement GPU
Événements
Recherche
À propos
Français
HyperAI
Toggle sidebar
Rechercher sur le site...
⌘
K
Accueil
SOTA
Classification d'images fine-grainée
Fine Grained Image Classification On Food 101
Fine Grained Image Classification On Food 101
Métriques
Accuracy
Résultats
Résultats de performance de divers modèles sur ce benchmark
Columns
Nom du modèle
Accuracy
Paper Title
Repository
Grafit (RegNet-8GF)
93.7
Grafit: Learning fine-grained image representations with coarse labels
-
CSWin-L
93.81
Learning Multi-Subset of Classes for Fine-Grained Food Recognition
NAT-M4
89.4
Neural Architecture Transfer
NAT-M1
87.4
Neural Architecture Transfer
Assemble-ResNet-FGVC-50
92.5
Compounding the Performance Improvements of Assembled Techniques in a Convolutional Neural Network
CAP
98.6
Context-aware Attentional Pooling (CAP) for Fine-grained Visual Classification
DoD (SwinV2-B)
94.9
Dining on Details: LLM-Guided Expert Networks for Fine-Grained Food Recognition
-
µ2Net+ (ViT-L/16)
91.47
A Continual Development Methodology for Large-scale Multitask Dynamic ML Systems
VOLO-D5
93.66
Learning Multi-Subset of Classes for Fine-Grained Food Recognition
EffNet-L2 (SAM)
96.18
Sharpness-Aware Minimization for Efficiently Improving Generalization
NAT-M2
88.5
Neural Architecture Transfer
ALIGN
95.88
Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision
EfficientNet-B7
93.0
EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
ImageNet + iNat on WS-DAN
-
Domain Adaptive Transfer Learning on Visual Attention Aware Data Augmentation for Fine-grained Visual Categorization
-
NAT-M3
89.0
Neural Architecture Transfer
0 of 15 row(s) selected.
Previous
Next