HyperAI

Fine Grained Image Classification On Caltech

Métriques

Top-1 Error Rate

Résultats

Résultats de performance de divers modèles sur ce benchmark

Tableau comparatif
Nom du modèleTop-1 Error Rate
understanding-gaussian-attention-bias-of9.798%
dead-pixel-test-using-effective-receptive4.42%
with-a-little-help-from-my-friends-nearest8.7%
stochastic-subsampling-with-average-pooling15.949%
spinalnet-deep-neural-network-with-gradual-12.68%
spinalnet-deep-neural-network-with-gradual-12.89%
bamboo-building-mega-scale-vision-dataset-
on-the-ideal-number-of-groups-for-isometric22.247%
autoaugment-learning-augmentation-policies13.07%
vision-models-are-more-robust-and-fair-when9.0%
reduction-of-class-activation-uncertainty1.98%
a-continual-development-methodology-for-large4.06%
how-to-use-dropout-correctly-on-residual15.8036%
self-supervised-learning-by-estimating-twin-16.5%
progressivespinalnet-architecture-for-fc-
an-evolutionary-approach-to-dynamic7%
unsupervised-learning-using-pretrained-cnn-
spinalnet-deep-neural-network-with-gradual-16.84%