HyperAI

Few Shot Image Classification On Mini 1

Métriques

Accuracy

Résultats

Résultats de performance de divers modèles sur ce benchmark

Tableau comparatif
Nom du modèleAccuracy
transductive-few-shot-learning-with-meta78.55%
prototype-rectification-for-few-shot-learning70.31%
hypershot-few-shot-learning-by-kernel53.18%
task-augmentation-by-rotating-for-meta65.95%
self-supervised-learning-for-few-shot-image76.82%
task-augmentation-by-rotating-for-meta65.38%
few-shot-learning-with-global-class53.21
negative-margin-matters-understanding-margin63.85
embedding-propagation-smoother-manifold-for77.27%
probabilistic-model-agnostic-meta-learning50.13%
basetransformers-attention-over-base-data70.88%
Modèle 1270.0%
baby-steps-towards-few-shot-learning-with67.2%
leveraging-the-feature-distribution-in82.92%
diversity-with-cooperation-ensemble-methods63.73%
exploiting-unsupervised-inputs-for-accurate76.47%