HyperAI

Few Shot Image Classification On Fc100 5 Way 1

Métriques

Accuracy

Résultats

Résultats de performance de divers modèles sur ce benchmark

Tableau comparatif
Nom du modèleAccuracy
fast-and-generalized-adaptation-for-few-shot66.9
bridging-multi-task-learning-and-meta57.7
meta-transfer-learning-for-few-shot-learning57.6
exploring-complementary-strengths-of65.3
sparse-spatial-transformers-for-few-shot58.92
tadam-task-dependent-adaptive-metric-for56.1
easy-ensemble-augmented-shot-y-shaped65.82
adaptive-dimension-reduction-and-variational70.60
self-supervised-knowledge-distillation-for63.1
easy-ensemble-augmented-shot-y-shaped64.74
task-augmentation-by-rotating-for-meta67.17
attribute-surrogates-learning-and-spectral66.42
meta-learning-with-differentiable-convex62.5
constellation-nets-for-few-shot-learning59.7
rethinking-generalization-in-few-shot-163.81
enhancing-few-shot-image-classification66.27
pseudo-shots-few-shot-learning-with-auxiliary61.58
easy-ensemble-augmented-shot-y-shaped64.14
task-augmentation-by-rotating-for-meta67.66
complementing-representation-deficiency-in57.8
complementing-representation-deficiency-in56.6
easy-ensemble-augmented-shot-y-shaped66.86