HyperAI
Accueil
Actualités
Articles de recherche récents
Tutoriels
Ensembles de données
Wiki
SOTA
Modèles LLM
Classement GPU
Événements
Recherche
À propos
Français
HyperAI
Toggle sidebar
Rechercher sur le site...
⌘
K
Accueil
SOTA
Few Shot Image Classification
Few Shot Image Classification On Cub 200 5
Few Shot Image Classification On Cub 200 5
Métriques
Accuracy
Résultats
Résultats de performance de divers modèles sur ce benchmark
Columns
Nom du modèle
Accuracy
Paper Title
Repository
CAML [Laion-2b]
98.7
Context-Aware Meta-Learning
-
LaplacianShot
88.68
Laplacian Regularized Few-Shot Learning
High-End MAML++
83.8
Learning to learn via Self-Critique
S2M2R
90.85
Charting the Right Manifold: Manifold Mixup for Few-shot Learning
EASY 4xResNet12 (inductive)
91.59
EASY: Ensemble Augmented-Shot Y-shaped Learning: State-Of-The-Art Few-Shot Classification with Simple Ingredients
DN4-DA (k=1)
81.9
Revisiting Local Descriptor based Image-to-Class Measure for Few-shot Learning
DKT + BNCosSim
85.64
Bayesian Meta-Learning for the Few-Shot Setting via Deep Kernels
PT+MAP+SF+BPA (transductive)
97.12
The Balanced-Pairwise-Affinities Feature Transform
Hyperbolic ProtoNet
72.22
Hyperbolic Image Embeddings
ICI
92.48
Instance Credibility Inference for Few-Shot Learning
EASY 4xResNet12 (transductive)
93.5
EASY: Ensemble Augmented-Shot Y-shaped Learning: State-Of-The-Art Few-Shot Classification with Simple Ingredients
BAVARDAGE
93.50
Adaptive Dimension Reduction and Variational Inference for Transductive Few-Shot Classification
-
TDM
93.37
Task Discrepancy Maximization for Fine-grained Few-Shot Classification
PT+MAP
93.99
Leveraging the Feature Distribution in Transfer-based Few-Shot Learning
TIM-GD
90.8
Transductive Information Maximization For Few-Shot Learning
Illumination Augmentation
96.28
Sill-Net: Feature Augmentation with Separated Illumination Representation
VFD
91.48
Variational Feature Disentangling for Fine-Grained Few-Shot Classification
-
ESPT
94.02
ESPT: A Self-Supervised Episodic Spatial Pretext Task for Improving Few-Shot Learning
BD-CSPN + ESFR (ResNet-18)
88.65
Unsupervised Embedding Adaptation via Early-Stage Feature Reconstruction for Few-Shot Classification
LST+MAP
94.09
Transfer learning based few-shot classification using optimal transport mapping from preprocessed latent space of backbone neural network
0 of 32 row(s) selected.
Previous
Next