HyperAI

Few Shot 3D Point Cloud Classification On 1

Métriques

Overall Accuracy
Standard Deviation

Résultats

Résultats de performance de divers modèles sur ce benchmark

Tableau comparatif
Nom du modèleOverall AccuracyStandard Deviation
pcp-mae-learning-to-predict-centers-for-point97.42.3
dynamic-graph-cnn-for-learning-on-point31.69.0
learning-3d-representations-from-2d-pre97.01.8
shapellm-universal-3d-object-understanding98.02.3
masked-discrimination-for-self-supervised95.03.7
gpr-net-geometric-prototypical-network-for74.42.0
masked-autoencoders-for-point-cloud-self96.32.5
pointgpt-auto-regressively-generative-pre-198.01.9
contrast-with-reconstruct-contrastive-3d97.31.9
autoencoders-as-cross-modal-teachers-can96.82.3
pointnet-deep-hierarchical-feature-learning38.5316.0
point-m2ae-multi-scale-masked-autoencoders96.81.8
pre-training-by-completing-point-clouds90.62.8
pre-training-by-completing-point-clouds89.71.9
pointcnn-convolution-on-mathcalx-transformed65.418.9
self-supervised-few-shot-learning-on-point63.210.7
gpr-net-geometric-prototypical-network-for81.11.5
point-jepa-a-joint-embedding-predictive97.42.2
gpr-net-geometric-prototypical-network-for80.40.5
point-bert-pre-training-3d-point-cloud94.63.1
self-supervised-few-shot-learning-on-point60.08.9
pointnet-deep-learning-on-point-sets-for-3d51.9712.1
point2vec-for-self-supervised-representation97.02.8
crossmoco-multi-modal-momentum-contrastive93.84.5
3d-jepa-a-joint-embedding-predictive97.62.0
regress-before-construct-regress-autoencoder97.31.6
point-lgmask-local-and-global-contexts97.42.0
rethinking-masked-representation-learning-for97.22.3
instance-aware-dynamic-prompt-tuning-for-pre97.3-
gpr-net-geometric-prototypical-network-for74.02.3