Facial Expression Recognition On Ferplus
Métriques
Accuracy(pretrained)
Résultats
Résultats de performance de divers modèles sur ce benchmark
Nom du modèle | Accuracy(pretrained) | Paper Title | Repository |
---|---|---|---|
RAN (VGG-16) | 89.16 | Region Attention Networks for Pose and Occlusion Robust Facial Expression Recognition | |
KTN | 90.49 | Adaptively Learning Facial Expression Representation via C-F Labels and Distillation | - |
Local Learning Deep + BOW | 87.76 | Local Learning with Deep and Handcrafted Features for Facial Expression Recognition | - |
SENet Teacher | 88.88 | Emotion Recognition in Speech using Cross-Modal Transfer in the Wild | - |
0 of 4 row(s) selected.