HyperAI

Facial Expression Recognition On Fer2013

Métriques

Accuracy

Résultats

Résultats de performance de divers modèles sur ce benchmark

Tableau comparatif
Nom du modèleAccuracy
a-novel-facial-emotion-recognition-model75.97
facial-expression-recognition-using-residual76.82
convolutional-neural-network-hyperparameters72.16
resemotenet-bridging-accuracy-and-loss79.79
ad-corre-adaptive-correlation-based-loss-for72.03
mini-resemotenet-leveraging-knowledge70.20
local-learning-with-deep-and-handcrafted75.42
local-multi-head-channel-self-attention-for74.42
emonext-an-adapted-convnext-for-facial-176.12
mini-resemotenet-leveraging-knowledge76.33
regularized-xception-for-facial-expression94.34
fer2013-recognition-resnet18-with-tricks73.70
challenges-in-representation-learning-a67.48
facial-emotion-recognition-state-of-the-art73.28
facial-expression-recognition-using-residual74.14
deep-emotion-facial-expression-recognition70.02