Facial Expression Recognition On Fer2013
Métriques
Accuracy
Résultats
Résultats de performance de divers modèles sur ce benchmark
Tableau comparatif
Nom du modèle | Accuracy |
---|---|
a-novel-facial-emotion-recognition-model | 75.97 |
facial-expression-recognition-using-residual | 76.82 |
convolutional-neural-network-hyperparameters | 72.16 |
resemotenet-bridging-accuracy-and-loss | 79.79 |
ad-corre-adaptive-correlation-based-loss-for | 72.03 |
mini-resemotenet-leveraging-knowledge | 70.20 |
local-learning-with-deep-and-handcrafted | 75.42 |
local-multi-head-channel-self-attention-for | 74.42 |
emonext-an-adapted-convnext-for-facial-1 | 76.12 |
mini-resemotenet-leveraging-knowledge | 76.33 |
regularized-xception-for-facial-expression | 94.34 |
fer2013-recognition-resnet18-with-tricks | 73.70 |
challenges-in-representation-learning-a | 67.48 |
facial-emotion-recognition-state-of-the-art | 73.28 |
facial-expression-recognition-using-residual | 74.14 |
deep-emotion-facial-expression-recognition | 70.02 |