HyperAI

Emotion Recognition In Conversation On Meld

Métriques

Accuracy
Weighted-F1

Résultats

Résultats de performance de divers modèles sur ce benchmark

Tableau comparatif
Nom du modèleAccuracyWeighted-F1
cfn-esa-a-cross-modal-fusion-network-with67.8566.70
hierarchical-dialogue-understanding-with-1-66.96
emocaps-emotion-capsule-based-model-for-64.00
efficient-long-distance-latent-relation-aware68.769.9
multi-task-learning-network-for-emotion-60.69
a-discourse-aware-graph-neural-network-for-64.22
the-emotion-is-not-one-hot-encoding-learning-66.49
dialoguernn-an-attentive-rnn-for-emotion59.5457.03
m2fnet-multi-modal-fusion-network-for-emotion67.2466.23
a-transformer-based-model-with-self67.5566.60
emotionic-emotional-inertia-and-contagion-66.32
hierarchical-pre-training-for-sequence-61.90
dialogxl-all-in-one-xlnet-for-multi-party-62.41
static-and-dynamic-speaker-modeling-based-on-65.90
multi-task-learning-network-for-emotion-61.90
supervised-prototypical-contrastive-learning-67.25
accumulating-word-representations-in-multi-64.58
graph-based-network-with-contextualized-65.36
dialoguegcn-a-graph-convolutional-neural59.4658.10
hcam-hierarchical-cross-attention-model-for-65.8
emoberta-speaker-aware-emotion-recognition-in-65.61
instructerc-reforming-emotion-recognition-in-69.15
knowledge-interactive-network-with-sentiment-63.24
a-facial-expression-aware-multimodal-multi-66.73
dialoguecrn-contextual-reasoning-networks-for60.7358.39
mm-dfn-multimodal-dynamic-fusion-network-for62.4959.46
topic-driven-and-knowledge-aware-transformer-65.47
contrast-and-generation-make-bart-a-good-64.81
bioserc-integrating-biography-speakers-69.83
telme-teacher-leading-multimodal-fusion-67.37
summarize-before-aggregate-a-global-to-local-58.45
ga2mif-graph-and-attention-based-two-stage61.6558.94
a-hierarchical-transformer-with-speaker-62.36
unimse-towards-unified-multimodal-sentiment65.0965.51
emotionflow-capture-the-dialogue-level-65.05
cosmic-commonsense-knowledge-for-emotion-65.21
knowledge-enriched-transformer-for-emotion-58.18
m2fnet-multi-modal-fusion-network-for-emotion67.8566.71
qwen-audio-advancing-universal-audio55.70-
revisiting-multi-modal-emotion-learning-with68.067.6
revisiting-disentanglement-and-fusion-on68.2867.03
context-dependent-sentiment-analysis-in-user57.5056.44
emotion-anchored-contrastive-learning-67.12
dialoguecrn-contextual-reasoning-networks-for66.9365.77
emocaps-emotion-capsule-based-model-for-63.51
directed-acyclic-graph-network-for-63.65
s-page-a-speaker-and-position-aware-graph-63.32
modeling-both-context-and-speaker-sensitive-57.4
multimodal-prompt-transformer-with-hybrid65.8665.02
an-iterative-emotion-interaction-network-for-60.72
supervised-adversarial-contrastive-learning67.5166.45
compm-context-modeling-with-speaker-s-pre-66.52
grasp-guiding-model-with-relational-semantics-65.6
relation-aware-graph-attention-networks-with-60.91
emotionflow-capture-the-dialogue-level-66.50
multi-task-multi-modal-self-supervised60.03-
hitrans-a-transformer-based-context-and-61.94
ckerc-joint-large-language-models-with-69.27
2407-21315-67.604
2407-2153667.7066.71
supervised-adversarial-contrastive-learning67.8966.86
graph-based-network-with-contextualized-62.47
past-present-and-future-conversational-65.18
contextualized-emotion-recognition-in-58.36
graphcfc-a-directed-graph-based-cross-modal61.4258.86
bieru-bidirectional-emotional-recurrent-unit-60.84
revisiting-multimodal-emotion-recognition-in68.169.0