HyperAI

Dichotomous Image Segmentation On Dis Vd

Métriques

E-measure
MAE
S-Measure
max F-Measure
weighted F-measure

Résultats

Résultats de performance de divers modèles sur ce benchmark

Tableau comparatif
Nom du modèleE-measureMAES-Measuremax F-Measureweighted F-measure
ben-using-confidence-guided-matting-for0.9350.0310.9160.9230.871
f3net-fusion-feedback-and-focus-for-salient0.8000.1070.7330.6850.595
revisiting-image-pyramid-structure-for-high--0.9000.889-
patch-depth-fusion-dichotomous-image0.9440.0300.9160.9130.873
pyramid-scene-parsing-network0.8020.1020.7440.6910.603
multi-view-aggregation-network-for0.9410.0340.9050.9040.863
global-context-aware-progressive-aggregation0.7650.1180.7180.6480.542
highly-accurate-dichotomous-image0.8560.0740.8130.7910.717
basnet-boundary-aware-salient-object0.8160.0940.7680.7310.641
rethinking-atrous-convolution-for-semantic0.7960.1140.7160.6600.568
concealed-object-detection0.7980.1100.7270.6650.584
bilateral-reference-for-high-resolution0.9280.0380.8980.8890.853
hyperseg-patch-wise-hypernetwork-for-real0.8140.0960.7730.7340.640
u-net-convolutional-networks-for-biomedical0.7850.1130.7450.6920.586
ben-using-confidence-guided-matting-for0.9580.0270.9170.9190.896
icnet-for-real-time-semantic-segmentation-on0.8110.1020.7470.6970.609
1908079190.8240.0950.7670.7260.641
suppress-and-balance-a-simple-gated-network0.7830.1100.7230.6780.574
rethinking-bisenet-for-real-time-semantic0.8170.1030.7400.6960.613
revisiting-image-pyramid-structure-for-high0.9210.0430.8870.8760.826
camouflaged-object-segmentation-with0.8110.1060.7400.6910.604
bisenet-bilateral-segmentation-network-for0.7670.1160.7280.6620.548
u-2-net-going-deeper-with-nested-u-structure0.8230.0900.7810.7480.656
searching-for-mobilenetv30.8410.0920.7580.7140.642