HyperAI

Dichotomous Image Segmentation On Dis Te1

Métriques

E-measure
HCE
MAE
S-Measure
max F-Measure
weighted F-measure

Résultats

Résultats de performance de divers modèles sur ce benchmark

Tableau comparatif
Nom du modèleE-measureHCEMAES-Measuremax F-Measureweighted F-measure
concealed-object-detection0.7912740.0940.7270.6440.558
icnet-for-real-time-semantic-segmentation-on0.7842340.0950.7160.6310.535
camouflaged-object-segmentation-with0.7862530.0940.7220.6460.552
patch-depth-fusion-dichotomous-image0.927-0.0310.8990.8900.846
hyperseg-patch-wise-hypernetwork-for-real0.8032050.0820.7610.6950.597
rethinking-bisenet-for-real-time-semantic0.7982490.0900.7230.6480.562
u-net-convolutional-networks-for-biomedical0.7502330.1060.7160.6250.514
bisenet-bilateral-segmentation-network-for0.7412880.1080.6950.5950.474
suppress-and-balance-a-simple-gated-network0.7662300.0990.7010.6200.517
1908079190.7972620.0880.7420.6680.579
rethinking-atrous-convolution-for-semantic0.7722340.1020.6940.6010.506
searching-for-mobilenetv30.8182740.0830.7400.6690.595
f3net-fusion-feedback-and-focus-for-salient0.7832440.0950.7210.6400.549
revisiting-image-pyramid-structure-for-high0.8941100.0450.8730.8450.788
pyramid-scene-parsing-network0.7912670.0890.7250.6450.557
highly-accurate-dichotomous-image0.8201490.0740.7870.7400.662
u-2-net-going-deeper-with-nested-u-structure0.8012240.0830.7600.6940.601
multi-view-aggregation-network-for0.9111040.0370.8790.8730.823
revisiting-image-pyramid-structure-for-high-148-0.8620.834-
bilateral-reference-for-high-resolution0.9081060.0380.8820.8550.814
global-context-aware-progressive-aggregation0.7502710.1030.7050.5980.495
basnet-boundary-aware-salient-object0.8012200.0840.7540.6880.595