HyperAI

Depth Estimation On Stanford2D3D Panoramic

Métriques

RMSE
absolute relative error

Résultats

Résultats de performance de divers modèles sur ce benchmark

Nom du modèle
RMSE
absolute relative error
Paper TitleRepository
PanoDepth0.37470.0972PanoDepth: A Two-Stage Approach for Monocular Omnidirectional Depth Estimation-
GLPanoDepth0.3493-GLPanoDepth: Global-to-Local Panoramic Depth Estimation
HiMODE0.26190.0532HiMODE: A Hybrid Monocular Omnidirectional Depth Estimation Model-
HoHoNet (ResNet-101)0.38340.1014HoHoNet: 360 Indoor Holistic Understanding with Latent Horizontal Features
FreDSNet0.27270.0952FreDSNet: Joint Monocular Depth and Semantic Segmentation with Fast Fourier Convolutions
UniFuse with fusion0.36910.1114UniFuse: Unidirectional Fusion for 360$^{circ}$ Panorama Depth Estimation
Jin et al.0.421-Geometric Structure Based and Regularized Depth Estimation From 360 Indoor Imagery-
OmniDepth0.61520.1996 OmniDepth: Dense Depth Estimation for Indoors Spherical Panoramas
BiFuse with fusion0.41420.1209BiFuse: Monocular 360 Depth Estimation via Bi-Projection Fusion
Neural Contourlet Network0.35280.0558Neural Contourlet Network for Monocular 360 Depth Estimation
SliceNet0.36840.0744SliceNet: Deep Dense Depth Estimation From a Single Indoor Panorama Using a Slice-Based Representation-
PanoFormer0.30830.0405PanoFormer: Panorama Transformer for Indoor 360 Depth Estimation
DisConv0.3690.176Distortion-Aware Convolutional Filters for Dense Prediction in Panoramic Images-
NLFB0.27760.0649Improving 360 Monocular Depth Estimation via Non-local Dense Prediction Transformer and Joint Supervised and Self-supervised Learning
OmniFusion (2-iter)0.34740.095OmniFusion: 360 Monocular Depth Estimation via Geometry-Aware Fusion
ACDNet0.3410.0984ACDNet: Adaptively Combined Dilated Convolution for Monocular Panorama Depth Estimation
BiFuse++0.3720.1117BiFuse++: Self-supervised and Efficient Bi-projection Fusion for 360 Depth Estimation
SphereDepth0.45120.1158SphereDepth: Panorama Depth Estimation from Spherical Domain-
0 of 18 row(s) selected.