Density Estimation On Cifar 10
Métriques
NLL (bits/dim)
Résultats
Résultats de performance de divers modèles sur ce benchmark
Tableau comparatif
Nom du modèle | NLL (bits/dim) |
---|---|
denoising-diffusion-probabilistic-models | 3.69 |
masked-autoregressive-flow-for-density | - |
ffjord-free-form-continuous-dynamics-for | 3.4 |
flow-matching-for-generative-modeling | 2.99 |
how-to-train-your-neural-ode | 3.38 |
conditional-image-generation-with-pixelcnn | 3.03 |
variational-diffusion-models | 2.65 |
pixelcnn-improving-the-pixelcnn-with | 2.92 |
diffusion-models-with-learned-adaptive-noise | 2.55 |
multi-resolution-continuous-normalizing-flows | 3.54 |
improved-techniques-for-maximum-likelihood | 2.42 |
image-transformer | 2.90 |
score-based-generative-modeling-through-1 | 2.99 |
generative-modeling-with-bayesian-sample | 2.64 |