Data To Text Generation On Cleaned E2E Nlg 1
Métriques
BLEU (Test set)
Résultats
Résultats de performance de divers modèles sur ce benchmark
Nom du modèle | BLEU (Test set) | Paper Title | Repository |
---|---|---|---|
DataTuner_FC | 43.6 | Have Your Text and Use It Too! End-to-End Neural Data-to-Text Generation with Semantic Fidelity | |
TGen | - | The GEM Benchmark: Natural Language Generation, its Evaluation and Metrics | - |
Control Prefixes (T5-large) | 44.15 | Control Prefixes for Parameter-Efficient Text Generation | |
LSTM | - | The GEM Benchmark: Natural Language Generation, its Evaluation and Metrics | - |
T5 | - | The GEM Benchmark: Natural Language Generation, its Evaluation and Metrics | - |
TGen | 40.73 | Semantic Noise Matters for Neural Natural Language Generation | |
BART | - | The GEM Benchmark: Natural Language Generation, its Evaluation and Metrics | - |
0 of 7 row(s) selected.