HyperAI
Accueil
Actualités
Articles de recherche récents
Tutoriels
Ensembles de données
Wiki
SOTA
Modèles LLM
Classement GPU
Événements
Recherche
À propos
Français
HyperAI
Toggle sidebar
Rechercher sur le site...
⌘
K
Accueil
SOTA
Data Augmentation
Data Augmentation On Imagenet
Data Augmentation On Imagenet
Métriques
Accuracy (%)
Résultats
Résultats de performance de divers modèles sur ce benchmark
Columns
Nom du modèle
Accuracy (%)
Paper Title
Repository
DeiT-S (+MixPro)
81.3
MixPro: Data Augmentation with MaskMix and Progressive Attention Labeling for Vision Transformer
ResNet-50 (LoRot-I)
77.71
Tailoring Self-Supervision for Supervised Learning
DeiT-T (+MixPro)
73.8
MixPro: Data Augmentation with MaskMix and Progressive Attention Labeling for Vision Transformer
ResNet-50 (UA)
77.63
UniformAugment: A Search-free Probabilistic Data Augmentation Approach
ResNet-200 (DeepAA)
81.32
Deep AutoAugment
ResNet-200 (UA)
80.4
UniformAugment: A Search-free Probabilistic Data Augmentation Approach
DeiT-B (+MixPro)
82.9
MixPro: Data Augmentation with MaskMix and Progressive Attention Labeling for Vision Transformer
ResNet-50 (RA)
77.6
RandAugment: Practical automated data augmentation with a reduced search space
ResNet-200 (AA)
80.0
AutoAugment: Learning Augmentation Policies from Data
ResNet-50 (DeepAA)
78.30
Deep AutoAugment
ResNet-50 (AA)
77.6
AutoAugment: Learning Augmentation Policies from Data
ResNet-50 (Faster AA)
76.5
Faster AutoAugment: Learning Augmentation Strategies using Backpropagation
-
ResNet-50 (Fast AA)
77.6
Fast AutoAugment
ResNet-200 (Fast AA)
80.6
Fast AutoAugment
ResNet-50 (TA wide)
78.07
TrivialAugment: Tuning-free Yet State-of-the-Art Data Augmentation
ResNet-50 (LoRot-E)
77.72
Tailoring Self-Supervision for Supervised Learning
ResNet-50 (DADA)
77.5
DADA: Differentiable Automatic Data Augmentation
0 of 17 row(s) selected.
Previous
Next