Continual Learning On Stanford Cars Fine
Métriques
Accuracy
Résultats
Résultats de performance de divers modèles sur ce benchmark
Nom du modèle | Accuracy | Paper Title | Repository |
---|---|---|---|
H$^{2}$ | 90.6 | Helpful or Harmful: Inter-Task Association in Continual Learning | |
PackNet | 86.11 | PackNet: Adding Multiple Tasks to a Single Network by Iterative Pruning | |
ProgressiveNet | 89.21 | Progressive Neural Networks | |
Piggyback | 89.62 | Piggyback: Adapting a Single Network to Multiple Tasks by Learning to Mask Weights | |
CondConvContinual | 92.61 | EXTENDING CONDITIONAL CONVOLUTION STRUCTURES FOR ENHANCING MULTITASKING CONTINUAL LEARNING | |
CPG | 92.80 | Compacting, Picking and Growing for Unforgetting Continual Learning |
0 of 6 row(s) selected.