Continual Learning
La méthodologie fait référence aux méthodes et étapes systématiques adoptées dans la recherche ou la résolution de problèmes. Son objectif est d'assurer la précision et la fiabilité de la recherche grâce à un processus scientifique et normalisé, ce qui améliore l'efficacité et la qualité de la résolution de problèmes. Dans divers domaines, la valeur d'application de la méthodologie est particulièrement évidente ; elle aide non seulement les chercheurs à clarifier leur orientation de recherche, mais fournit également un guide opérationnel normalisé pour la mise en œuvre des projets, favorisant ainsi la coopération interdisciplinaire et le partage des résultats.
20Newsgroup (10 tasks)
5-dataset - 1 epoch
5-Datasets
ASC (19 tasks)
CTR
CIFAR-100 AlexNet - 300 Epoch
CIFAR-100 ResNet-18 - 300 Epochs
IBM
Cifar100 (10 tasks)
RMN (Resnet)
Cifar100 (20 tasks)
Model Zoo-Continual
Cifar100 (20 tasks) - 1 epoch
Coarse-CIFAR100
Model Zoo-Continual
CUB-200-2011 (20 tasks) - 1 epoch
CUBS (Fine-grained 6 Tasks)
CondConvContinual
DSC (10 tasks)
CTR
F-CelebA (10 tasks)
CAT (CNN backbone)
Flowers (Fine-grained 6 Tasks)
CondConvContinual
ImageNet-50 (5 tasks)
RMN
ImageNet (Fine-grained 6 Tasks)
CondConvContinual
mini-Imagenet (20 tasks) - 1 epoch
TAG-RMSProp
miniImagenet
MiniImageNet ResNet-18 - 300 Epochs
MLT17
Permuted MNIST
RMN
Rotated MNIST
Model Zoo-Continual
Sketch (Fine-grained 6 Tasks)
Split CIFAR-10 (5 tasks)
H$^{2}$
split CIFAR-100
Split MNIST (5 tasks)
H$^{2}$
Stanford Cars (Fine-grained 6 Tasks)
CPG
Tiny-ImageNet (10tasks)
ALTA-ViTB/16
TinyImageNet ResNet-18 - 300 Epochs
visual domain decathlon (10 tasks)
NetTailor
Wikiart (Fine-grained 6 Tasks)