HyperAI

Audio Visual Active Speaker Detection On Ava

Métriques

validation mean average precision

Résultats

Résultats de performance de divers modèles sur ce benchmark

Tableau comparatif
Nom du modèlevalidation mean average precision
loconet-long-short-context-network-for-active95.2%
maas-multi-modal-assignation-for-active88.8%
learning-long-term-spatial-temporal-graphs94.2%
multi-task-learning-for-audio-visual-active84.0%
how-to-design-a-three-stage-architecture-for93.5%
laser-lip-landmark-assisted-speaker-detection95.3%
learning-long-term-spatial-temporal-graphs94.9%
naver-at-activitynet-challenge-2019-task-b87.8%
maas-multi-modal-assignation-for-active85.1%
active-speakers-in-context87.1%
talknce-improving-active-speaker-detection95.5%
unicon-unified-context-network-for-robust92.0%
audio-visual-activity-guided-cross-modal92.86%
sub-word-level-lip-reading-with-visual89.2%
active-speaker-detection-as-a-multi-objective91.9%
end-to-end-active-speaker-detection94.1%
ictcas-ucas-tal-submission-to-the-ava93.6%
unicon-ictcas-ucas-submission-to-the-ava94.5%
a-light-weight-model-for-active-speaker94.1%
nus-hlt-report-for-activitynet-challenge-202192.3%