HyperAI

Aspect Based Sentiment Analysis On Semeval

Métriques

Laptop (Acc)
Mean Acc (Restaurant + Laptop)
Restaurant (Acc)

Résultats

Résultats de performance de divers modèles sur ce benchmark

Tableau comparatif
Nom du modèleLaptop (Acc)Mean Acc (Restaurant + Laptop)Restaurant (Acc)
back-to-reality-leveraging-pattern-driven86.2188.2790.33
attentional-encoder-network-for-targeted79.9381.5383.12
multi-grained-attention-network-for-aspect75.3978.3281.25
adversarial-training-for-aspect-based79.3582.6986.03
aspect-level-sentiment-classification-with-172.2176.5880.95
improving-bert-performance-for-aspect-based79.5582.9686.37
attentional-encoder-network-for-targeted78.9981.7384.46
interactive-attention-networks-for-aspect72.1075.3578.60
exploiting-typed-syntactic-dependencies-for81.2583.9286.59
masking-the-bias-from-echo-chambers-to-large86.2486.9587.65
semi-supervised-target-level-sentiment75.3478.2281.10
transformation-networks-for-target-oriented76.01-80.79
a-position-aware-bidirectional-attention74.1277.6481.16
effective-attention-modeling-for-aspect-level71.9476.2980.63
attentional-encoder-network-for-targeted73.5177.2580.98
attention-and-lexicon-regularized-lstm-for--82.86
aspect-based-sentiment-analysis-using-bitmask74.978.181.3
bert-post-training-for-review-reading78.0781.5184.95
rvisa-reasoning-and-verification-for-implicit86.6889.1091.52
progressive-self-supervised-attention77.6279.5881.53
a-multi-task-learning-model-for-chinese82.2986.2490.18
modeling-sentiment-dependencies-with-graph81.3582.4683.57
multi-task-learning-with-llms-for-implicit85.7489.2192.68
hierarchical-attention-based-position-aware77.2779.7582.23
effective-lstms-for-target-dependent68.1371.8875.63
you-only-read-once-constituency-oriented81.8284.4887.14
exploiting-document-knowledge-for-aspect71.1575.1379.11
attention-based-lstm-for-aspect-level68.7072.9577.20
aspect-sentiment-classification-with-aspect77.6480.2582.86
understand-me-if-you-refer-to-aspect81.8784.6187.35
target-sensitive-memory-networks-for-aspect72.4374.0875.73
recurrent-attention-network-on-memory-for74.4977.3680.23
aspect-based-sentiment-analysis-using-bert82,7686,1189,46
adapt-or-get-left-behind-domain-adaptation80.2384.0687.89
does-syntax-matter-a-strong-baseline-for83.7885.5887.37
towards-unifying-the-label-space-for-aspect81.9685.7589.54
aspect-level-sentiment-classification-with74.577.8581.20
transformation-networks-for-target-oriented76.0178.480.79
learning-latent-opinions-for-aspect-level75.178.3581.6
attention-and-lexicon-regularized-lstm-for--82.62
iarm-inter-aspect-relation-modeling-with73.877.0280.0
left-center-right-separated-neural-network75.2478.2981.34
does-bert-understand-sentiment-leveraging--86.20
an-interactive-multi-task-learning-network75.3679.6383.89
parameterized-convolutional-neural-networks-170.0674.6379.20
exploiting-coarse-to-fine-task-transfer-for76.2178.8581.49
instructabsa-instruction-learning-for-aspect80.5681.582.44
target-sensitive-memory-networks-for-aspect71.7975.2978.79