Aspect Based Sentiment Analysis Absa On Asqp
Métriques
F1 (R15)
Résultats
Résultats de performance de divers modèles sur ce benchmark
Nom du modèle | F1 (R15) | Paper Title | Repository |
---|---|---|---|
ChatGPT (gpt-3.5-turbo, few-shot) | 34.27 | MvP: Multi-view Prompting Improves Aspect Sentiment Tuple Prediction | |
DLO | 48.18 | Improving Aspect Sentiment Quad Prediction via Template-Order Data Augmentation | |
MvP (multi-task) | 52.21 | MvP: Multi-view Prompting Improves Aspect Sentiment Tuple Prediction | |
LEGO-ABSA (multi-task) | 46.10 | LEGO-ABSA: A Prompt-based Task Assemblable Unified Generative Framework for Multi-task Aspect-based Sentiment Analysis | - |
ChatGPT (gpt-3.5-turbo, zero-shot) | 22.87 | MvP: Multi-view Prompting Improves Aspect Sentiment Tuple Prediction | |
Paraphrase | 46.93 | Aspect Sentiment Quad Prediction as Paraphrase Generation | |
TAS-BRET | 34.78 | Aspect Sentiment Quad Prediction as Paraphrase Generation | |
GAS | 45.98 | Towards Generative Aspect-Based Sentiment Analysis | |
AugABSA | 50.01 | Generative Data Augmentation for Aspect Sentiment Quad Prediction | |
MvP | 51.04 | MvP: Multi-view Prompting Improves Aspect Sentiment Tuple Prediction |
0 of 10 row(s) selected.