HyperAI

Neural Architecture Search On Nas Bench 201 2

Métriques

Accuracy (Test)
Accuracy (Val)
Search time (s)

Résultats

Résultats de performance de divers modèles sur ce benchmark

Nom du modèle
Accuracy (Test)
Accuracy (Val)
Search time (s)
Paper TitleRepository
DARTS-V115.6115.0310890--
KNAS (k=40)71.05--KNAS: Green Neural Architecture Search
DSNAS-31.01-DSNAS: Direct Neural Architecture Search without Parameter Retraining
SETN56.8759.0531010One-Shot Neural Architecture Search via Self-Evaluated Template Network
Shapley-NAS73.5173.49-Shapley-NAS: Discovering Operation Contribution for Neural Architecture Search
IS-DARTS73.51 73.49-IS-DARTS: Stabilizing DARTS through Precise Measurement on Candidate Importance
RF-DARTS72.9472.95-Differentiable Architecture Search with Random Features-
α-DARTS73.1673.21-$α$ DARTS Once More: Enhancing Differentiable Architecture Search by Masked Image Modeling-
SNAS69.3469.69-SNAS: Stochastic Neural Architecture Search
DARTS-V215.6115.0329902--
iDARTS70.8370.57-iDARTS: Differentiable Architecture Search with Stochastic Implicit Gradients
DrNAS73.5173.49-DrNAS: Dirichlet Neural Architecture Search
GAEA DARTS (ERM)73.43--Geometry-Aware Gradient Algorithms for Neural Architecture Search
ENAS15.6115.0313315Efficient Neural Architecture Search via Parameters Sharing-
BaLeNAS-TF72.9572.67-BaLeNAS: Differentiable Architecture Search via the Bayesian Learning Rule-
GenNAS72.56-1080Generic Neural Architecture Search via Regression
DiNAS73.5173.4915.36Multi-conditioned Graph Diffusion for Neural Architecture Search
arch2vec73.3773.35-Does Unsupervised Architecture Representation Learning Help Neural Architecture Search?
CR-LSO73.4773.44-CR-LSO: Convex Neural Architecture Optimization in the Latent Space of Graph Variational Autoencoder with Input Convex Neural Networks
DARTS-71.5371.36-DARTS-: Robustly Stepping out of Performance Collapse Without Indicators
0 of 40 row(s) selected.