HyperAI
Accueil
Actualités
Articles de recherche récents
Tutoriels
Ensembles de données
Wiki
SOTA
Modèles LLM
Classement GPU
Événements
Recherche
À propos
Français
HyperAI
Toggle sidebar
Rechercher sur le site...
⌘
K
Accueil
SOTA
Architecture Search
Neural Architecture Search On Nas Bench 201 1
Neural Architecture Search On Nas Bench 201 1
Métriques
Accuracy (Test)
Accuracy (Val)
Résultats
Résultats de performance de divers modèles sur ce benchmark
Columns
Nom du modèle
Accuracy (Test)
Accuracy (Val)
Paper Title
Repository
NAR
94.33
91.44
Generalized Global Ranking-Aware Neural Architecture Ranker for Efficient Image Classifier Search
β-DARTS
94.36
91.55
$β$-DARTS: Beta-Decay Regularization for Differentiable Architecture Search
DARTS-V2
54.30
39.77
-
-
GDAS
93.61
89.89
Searching for A Robust Neural Architecture in Four GPU Hours
arch2vec
94.18
91.41
Does Unsupervised Architecture Representation Learning Help Neural Architecture Search?
EPE-NAS (N=10)
92.63
89.90
EPE-NAS: Efficient Performance Estimation Without Training for Neural Architecture Search
SNAS
92.77
90.10
SNAS: Stochastic Neural Architecture Search
Shapley-NAS
94.37
91.61
Shapley-NAS: Discovering Operation Contribution for Neural Architecture Search
DARTS-
93.80
91.03
DARTS-: Robustly Stepping out of Performance Collapse Without Indicators
SETN
86.19
82.25
-
-
DARTS-V1
54.30
39.77
-
-
NAS-LID+RSPS
92.9
89.74
NAS-LID: Efficient Neural Architecture Search with Local Intrinsic Dimension
DU-DARTS
93.86
91.21
DU-DARTS: Decreasing the Uncertainty of Differentiable Architecture Search
AG-Net
94.37
91.61
Learning Where To Look -- Generative NAS is Surprisingly Efficient
BaLeNAS-TF
94.33
91.52
BaLeNAS: Differentiable Architecture Search via the Bayesian Learning Rule
-
Λ-DARTS
94.36
91.55
$Λ$-DARTS: Mitigating Performance Collapse by Harmonizing Operation Selection among Cells
GAEA DARTS (ERM)
94.1
-
Geometry-Aware Gradient Algorithms for Neural Architecture Search
RSPS
87.66
84.16
Random Search and Reproducibility for Neural Architecture Search
IS-DARTS
94.36
91.55
IS-DARTS: Stabilizing DARTS through Precise Measurement on Candidate Importance
CATCH-meta
-
91.33
CATCH: Context-based Meta Reinforcement Learning for Transferrable Architecture Search
-
0 of 37 row(s) selected.
Previous
Next