Command Palette
Search for a command to run...
Adversarial Defense On Mnist
Métriques
Accuracy
Inference speed
Résultats
Résultats de performance de divers modèles sur ce benchmark
| Paper Title | |||
|---|---|---|---|
| Defense GAN | 0.8529 | 14.80 | Defense-GAN: Protecting Classifiers Against Adversarial Attacks Using Generative Models |
| PuVAE | 0.8133 | 0.11 | PuVAE: A Variational Autoencoder to Purify Adversarial Examples |
0 of 2 row(s) selected.