HyperAI
HyperAI
Accueil
Actualités
Articles de recherche récents
Tutoriels
Ensembles de données
Wiki
SOTA
Modèles LLM
Classement GPU
Événements
Recherche
À propos
Français
HyperAI
HyperAI
Toggle sidebar
Rechercher sur le site...
⌘
K
Accueil
SOTA
Estimation de pose 6D utilisant RGB
6D Pose Estimation Using Rgb On Occlusion
6D Pose Estimation Using Rgb On Occlusion
Métriques
Mean ADD
Résultats
Résultats de performance de divers modèles sur ce benchmark
Columns
Nom du modèle
Mean ADD
Paper Title
Repository
ROPE
45.95
Occlusion-Robust Object Pose Estimation with Holistic Representation
-
CullNet
24.48
CullNet: Calibrated and Pose Aware Confidence Scores for Object Pose Estimation
-
E2E6DoF
47.4
End-to-End Differentiable 6DoF Object Pose Estimation with Local and Global Constraints
-
DPOD
47.25
DPOD: 6D Pose Object Detector and Refiner
-
HybridPose
47.5
HybridPose: 6D Object Pose Estimation under Hybrid Representations
-
SegDriven
27
Segmentation-driven 6D Object Pose Estimation
-
PVNet
40.77
PVNet: Pixel-wise Voting Network for 6DoF Pose Estimation
-
RePOSE
51.6
RePOSE: Fast 6D Object Pose Refinement via Deep Texture Rendering
-
RNNPose (Trained with synthetic data and LINEMOD training set, w/o pbr data)
60.65
RNNPose: Recurrent 6-DoF Object Pose Refinement with Robust Correspondence Field Estimation and Pose Optimization
-
GDR-Net
56.1
GDRNPP: A Geometry-guided and Fully Learning-based Object Pose Estimator
-
DeepIM (Train on Occlusion LineMOD)
55.5
DeepIM: Deep Iterative Matching for 6D Pose Estimation
-
PPC (Refined from initial PVNet pose)
55.33
Pose Proposal Critic: Robust Pose Refinement by Learning Reprojection Errors
-
SO-Pose
62.3
SO-Pose: Exploiting Self-Occlusion for Direct 6D Pose Estimation
-
0 of 13 row(s) selected.
Previous
Next