HyperAI

3D Semantic Segmentation On Semantickitti

Métriques

test mIoU

Résultats

Résultats de performance de divers modèles sur ce benchmark

Nom du modèle
test mIoU
Paper TitleRepository
PolarNet57.2%PolarNet: An Improved Grid Representation for Online LiDAR Point Clouds Semantic Segmentation
PointNet++20.1%PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space
TangentConv35.9%Tangent Convolutions for Dense Prediction in 3D
BAAF-Net59.9%Semantic Segmentation for Real Point Cloud Scenes via Bilateral Augmentation and Adaptive Fusion
SPLATNet18.4%SPLATNet: Sparse Lattice Networks for Point Cloud Processing
PPT+SparseUNet-Towards Large-scale 3D Representation Learning with Multi-dataset Point Prompt Training
DITR74.4%--
TALoS-TALoS: Enhancing Semantic Scene Completion via Test-time Adaptation on the Line of Sight
TORNADONet-HiRes63.1%TORNADO-Net: mulTiview tOtal vaRiatioN semAntic segmentation with Diamond inceptiOn module-
SqueezeSegV355.9%SqueezeSegV3: Spatially-Adaptive Convolution for Efficient Point-Cloud Segmentation
NAPL61.6%Number-Adaptive Prototype Learning for 3D Point Cloud Semantic Segmentation-
RandLA-Net53.9%RandLA-Net: Efficient Semantic Segmentation of Large-Scale Point Clouds
KPRNet63.1%KPRNet: Improving projection-based LiDAR semantic segmentation
OA-CNNs-OA-CNNs: Omni-Adaptive Sparse CNNs for 3D Semantic Segmentation
2DPASS72.9%2DPASS: 2D Priors Assisted Semantic Segmentation on LiDAR Point Clouds
FRNet73.3%FRNet: Frustum-Range Networks for Scalable LiDAR Segmentation
MPF55.5%Multi Projection Fusion for Real-time Semantic Segmentation of 3D LiDAR Point Clouds-
PointNet14.6%PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation
LiM3D+SDSC-Less is More: Reducing Task and Model Complexity for 3D Point Cloud Semantic Segmentation
Meta-RangeSeg61.0%Meta-RangeSeg: LiDAR Sequence Semantic Segmentation Using Multiple Feature Aggregation
0 of 46 row(s) selected.