HyperAI
Accueil
Actualités
Articles de recherche récents
Tutoriels
Ensembles de données
Wiki
SOTA
Modèles LLM
Classement GPU
Événements
Recherche
À propos
Français
HyperAI
Toggle sidebar
Rechercher sur le site...
⌘
K
Accueil
SOTA
3D Semantic Segmentation
3D Semantic Segmentation On Scannet200
3D Semantic Segmentation On Scannet200
Métriques
test mIoU
val mIoU
Résultats
Résultats de performance de divers modèles sur ce benchmark
Columns
Nom du modèle
test mIoU
val mIoU
Paper Title
Repository
DITR
44.9
41.2
-
-
PPT+SparseUNet
33.2
31.9
Towards Large-scale 3D Representation Learning with Multi-dataset Point Prompt Training
Pamba
37.1
36.3
Pamba: Enhancing Global Interaction in Point Clouds via State Space Model
-
OctFormer
32.5
32.6
OctFormer: Octree-based Transformers for 3D Point Clouds
PonderV2 + SparseUNet
34.6
32.3
PonderV2: Pave the Way for 3D Foundation Model with A Universal Pre-training Paradigm
OneFormer3D
-
30.1
OneFormer3D: One Transformer for Unified Point Cloud Segmentation
OA-CNNs
32.3
33.3
OA-CNNs: Omni-Adaptive Sparse CNNs for 3D Semantic Segmentation
LSK3DNet
-
33.1
LSK3DNet: Towards Effective and Efficient 3D Perception with Large Sparse Kernels
CSC
24.9
26.4
Exploring Data-Efficient 3D Scene Understanding with Contrastive Scene Contexts
MinkUNet
25.3
25.0
4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks
ODIN
36.8
40.5
ODIN: A Single Model for 2D and 3D Segmentation
Sonata + PTv3
-
36.8
-
-
BFANet
36.0
37.3
-
-
PTv3 + PPT
39.3
36.0
Point Transformer V3: Simpler, Faster, Stronger
LGround
27.2
28.8
Language-Grounded Indoor 3D Semantic Segmentation in the Wild
PTv3 ArKitLabelmaker
41.4
40.3
ARKit LabelMaker: A New Scale for Indoor 3D Scene Understanding
0 of 16 row(s) selected.
Previous
Next