HyperAI
Accueil
Actualités
Articles de recherche récents
Tutoriels
Ensembles de données
Wiki
SOTA
Modèles LLM
Classement GPU
Événements
Recherche
À propos
Français
HyperAI
Toggle sidebar
Rechercher sur le site...
⌘
K
Accueil
SOTA
3D Object Detection
3D Object Detection On Scannetv2
3D Object Detection On Scannetv2
Métriques
mAP@0.25
mAP@0.5
Résultats
Résultats de performance de divers modèles sur ce benchmark
Columns
Nom du modèle
mAP@0.25
mAP@0.5
Paper Title
Repository
BFL
74.6
65.3
-
-
TR3D
72.9
59.3
TR3D: Towards Real-Time Indoor 3D Object Detection
RBGNet
70.6
55.2
RBGNet: Ray-based Grouping for 3D Object Detection
HGNet
61.3
34.4
A Hierarchical Graph Network for 3D Object Detection on Point Clouds
-
PBNet
69.3
60.1
Divide and Conquer: 3D Point Cloud Instance Segmentation With Point-Wise Binarization
V-DETR
77.8
65.9
V-DETR: DETR with Vertex Relative Position Encoding for 3D Object Detection
Point-GCC+TR3D
73.1
59.6
Point-GCC: Universal Self-supervised 3D Scene Pre-training via Geometry-Color Contrast
BRNet
66.1
50.9
Back-tracing Representative Points for Voting-based 3D Object Detection in Point Clouds
SoftGroup
71.6
59.4
SoftGroup for 3D Instance Segmentation on Point Clouds
GSDN
62.8
34.8
Generative Sparse Detection Networks for 3D Single-shot Object Detection
SPGroup3D
74.3
59.6
SPGroup3D: Superpoint Grouping Network for Indoor 3D Object Detection
H3DNet
67.2
48.1
H3DNet: 3D Object Detection Using Hybrid Geometric Primitives
ImGeoNet (RGB only)
54.8
28.4
ImGeoNet: Image-induced Geometry-aware Voxel Representation for Multi-view 3D Object Detection
VoteNet
58.6
33.5
Deep Hough Voting for 3D Object Detection in Point Clouds
GroupFree3D
69.1
52.8
Group-Free 3D Object Detection via Transformers
Swin3D-L+CAGroup3D
76.4
63.2
Swin3D: A Pretrained Transformer Backbone for 3D Indoor Scene Understanding
OneFormer3D
76.9
65.3
OneFormer3D: One Transformer for Unified Point Cloud Segmentation
TokenFusion
70.8
54.2
Multimodal Token Fusion for Vision Transformers
UniDet3D
77.5
66.1
UniDet3D: Multi-dataset Indoor 3D Object Detection
DEST (based on V-DETR) (TTA)
78.8
67.9
-
-
0 of 33 row(s) selected.
Previous
Next