3D Object Detection On Kitti Pedestrian Easy
Métriques
AP
Résultats
Résultats de performance de divers modèles sur ce benchmark
Nom du modèle | AP | Paper Title | Repository |
---|---|---|---|
PVCNN | 73.2 | Point-Voxel CNN for Efficient 3D Deep Learning | |
F-PointNet++ [Qi:2018fd] | 70.00 | Frustum PointNets for 3D Object Detection from RGB-D Data | |
F-PointNet [Qi:2018fd] | 65.08 | Frustum PointNets for 3D Object Detection from RGB-D Data | |
M3DeTR | 67.64 | M3DeTR: Multi-representation, Multi-scale, Mutual-relation 3D Object Detection with Transformers |
0 of 4 row(s) selected.