HyperAI
Accueil
Actualités
Articles de recherche récents
Tutoriels
Ensembles de données
Wiki
SOTA
Modèles LLM
Classement GPU
Événements
Recherche
À propos
Français
HyperAI
Toggle sidebar
Rechercher sur le site...
⌘
K
Accueil
SOTA
3D Object Detection
3D Object Detection On Kitti Cyclists Hard
3D Object Detection On Kitti Cyclists Hard
Métriques
AP
Résultats
Résultats de performance de divers modèles sur ce benchmark
Columns
Nom du modèle
AP
Paper Title
Repository
SVGA-Net
57.64%
SVGA-Net: Sparse Voxel-Graph Attention Network for 3D Object Detection from Point Clouds
-
VoxelNet
44.37%
VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection
STD
55.77%
STD: Sparse-to-Dense 3D Object Detector for Point Cloud
-
PV-RCNN
57.65%
PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object Detection
PointRCNN
53.59%
PointRCNN: 3D Object Proposal Generation and Detection from Point Cloud
SA-Det3D
61.33%
SA-Det3D: Self-Attention Based Context-Aware 3D Object Detection
AVOD + Feature Pyramid
46.61%
Joint 3D Proposal Generation and Object Detection from View Aggregation
IPOD
48.34%
IPOD: Intensive Point-based Object Detector for Point Cloud
-
Frustum PointNets
50.39%
Frustum PointNets for 3D Object Detection from RGB-D Data
PointPillars
52.92%
PointPillars: Fast Encoders for Object Detection from Point Clouds
F-ConvNets
57.03%
Frustum ConvNet: Sliding Frustums to Aggregate Local Point-Wise Features for Amodal 3D Object Detection
M3DeTR
59.03%
M3DeTR: Multi-representation, Multi-scale, Mutual-relation 3D Object Detection with Transformers
0 of 12 row(s) selected.
Previous
Next