HyperAI
Accueil
Actualités
Articles de recherche récents
Tutoriels
Ensembles de données
Wiki
SOTA
Modèles LLM
Classement GPU
Événements
Recherche
À propos
Français
HyperAI
Toggle sidebar
Rechercher sur le site...
⌘
K
Accueil
SOTA
3D Object Detection
3D Object Detection On Kitti Cyclists
3D Object Detection On Kitti Cyclists
Métriques
AP
Résultats
Résultats de performance de divers modèles sur ce benchmark
Columns
Nom du modèle
AP
Paper Title
Repository
VoxelNet With Eloss
58%
Eloss in the way: A Sensitive Input Quality Metrics for Intelligent Driving
F-ConvNet
64.68%
Frustum ConvNet: Sliding Frustums to Aggregate Local Point-Wise Features for Amodal 3D Object Detection
AVOD + Feature Pyramid
52.18%
Joint 3D Proposal Generation and Object Detection from View Aggregation
PointPillars
59.07%
PointPillars: Fast Encoders for Object Detection from Point Clouds
PointRCNN
59.60%
PointRCNN: 3D Object Proposal Generation and Detection from Point Cloud
3D-FCT
75.86%
3D-FCT: Simultaneous 3D Object Detection and Tracking Using Feature Correlation
-
SVGA-Net
66.13%
SVGA-Net: Sparse Voxel-Graph Attention Network for 3D Object Detection from Point Clouds
-
VoxelNet
48.36%
VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection
PV-RCNN
63.71%
PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object Detection
M3DeTR
66.74%
M3DeTR: Multi-representation, Multi-scale, Mutual-relation 3D Object Detection with Transformers
Frustum PointNets
56.77%
Frustum PointNets for 3D Object Detection from RGB-D Data
IPOD
53.46%
IPOD: Intensive Point-based Object Detector for Point Cloud
-
STD
62.53%
STD: Sparse-to-Dense 3D Object Detector for Point Cloud
-
0 of 13 row(s) selected.
Previous
Next