HyperAI

3D Object Detection On Kitti Cyclists

Métriques

AP

Résultats

Résultats de performance de divers modèles sur ce benchmark

Tableau comparatif
Nom du modèleAP
eloss-in-the-way-a-sensitive-input-quality58%
frustum-convnet-sliding-frustums-to-aggregate64.68%
joint-3d-proposal-generation-and-object52.18%
pointpillars-fast-encoders-for-object59.07%
pointrcnn-3d-object-proposal-generation-and59.60%
3d-fct-simultaneous-3d-object-detection-and75.86%
svga-net-sparse-voxel-graph-attention-network66.13%
voxelnet-end-to-end-learning-for-point-cloud48.36%
pv-rcnn-point-voxel-feature-set-abstraction63.71%
m3detr-multi-representation-multi-scale66.74%
frustum-pointnets-for-3d-object-detection56.77%
ipod-intensive-point-based-object-detector53.46%
std-sparse-to-dense-3d-object-detector-for62.53%