HyperAI
HyperAI
Accueil
Actualités
Articles de recherche récents
Tutoriels
Ensembles de données
Wiki
SOTA
Modèles LLM
Classement GPU
Événements
Recherche
À propos
Français
HyperAI
HyperAI
Toggle sidebar
Rechercher sur le site...
⌘
K
Accueil
SOTA
Détection d'objets en 3D
3D Object Detection On Dair V2X I
3D Object Detection On Dair V2X I
Métriques
AP|R40(easy)
AP|R40(hard)
AP|R40(moderate)
Résultats
Résultats de performance de divers modèles sur ce benchmark
Columns
Nom du modèle
AP|R40(easy)
AP|R40(hard)
AP|R40(moderate)
Paper Title
Repository
MonoUNI
90.92
87.2
87.2
MonoUNI: A Unified Vehicle and Infrastructure-side Monocular 3D Object Detection Network with Sufficient Depth Clues
PointPillars
63.1
54.0
54.0
PointPillars: Fast Encoders for Object Detection from Point Clouds
-
BEVHeight
77.8
65.9
65.8
BEVHeight: A Robust Framework for Vision-based Roadside 3D Object Detection
-
MVXNet
71.0
53.8
53.7
MVX-Net: Multimodal VoxelNet for 3D Object Detection
-
CBR
72.0
60.1
60.1
Calibration-free BEV Representation for Infrastructure Perception
-
CoBEV
82.0
69.7
69.6
CoBEV: Elevating Roadside 3D Object Detection with Depth and Height Complementarity
-
BEVFormer
61.4
50.7
50.7
BEVFormer: Learning Bird's-Eye-View Representation from Multi-Camera Images via Spatiotemporal Transformers
-
BEVDepth
75.7
63.7
63.6
BEVDepth: Acquisition of Reliable Depth for Multi-view 3D Object Detection
-
ImVoxelNet
44.8
37.6
37.6
ImVoxelNet: Image to Voxels Projection for Monocular and Multi-View General-Purpose 3D Object Detection
-
0 of 9 row(s) selected.
Previous
Next
3D Object Detection On Dair V2X I | SOTA | HyperAI