HyperAI
HyperAI
Accueil
Actualités
Articles de recherche récents
Tutoriels
Ensembles de données
Wiki
SOTA
Modèles LLM
Classement GPU
Événements
Recherche
À propos
Français
HyperAI
HyperAI
Toggle sidebar
Rechercher sur le site...
⌘
K
Accueil
SOTA
Détection d'anomalies en 3D et segmentation
3D Anomaly Detection And Segmentation On
3D Anomaly Detection And Segmentation On
Métriques
Detection AUROC
Segmentation AUPRO
Résultats
Résultats de performance de divers modèles sur ce benchmark
Columns
Nom du modèle
Detection AUROC
Segmentation AUPRO
Paper Title
Repository
Voxel GAN
0.537
0.583
The MVTec 3D-AD Dataset for Unsupervised 3D Anomaly Detection and Localization
-
Voxel VM
0.571
0.492
The MVTec 3D-AD Dataset for Unsupervised 3D Anomaly Detection and Localization
-
Back to the Feature: Classical 3D Features are (Almost) All You Need for 3D Anomaly Detection (FPFH)
0.782
0.924
Back to the Feature: Classical 3D Features are (Almost) All You Need for 3D Anomaly Detection
-
Shape-Guided (only SDF)
0.916
0.931
Shape-Guided: Shape-Guided Dual-Memory Learning for 3D Anomaly Detection
CPMF (2D)
0.8918
0.9145
Complementary Pseudo Multimodal Feature for Point Cloud Anomaly Detection
-
Voxel AE
0.699
0.348
The MVTec 3D-AD Dataset for Unsupervised 3D Anomaly Detection and Localization
-
3D-ST_128
-
0.833
Anomaly Detection in 3D Point Clouds using Deep Geometric Descriptors
-
CPMF (2D+3D)
0.9515
0.9293
Complementary Pseudo Multimodal Feature for Point Cloud Anomaly Detection
-
CPMF (3D)
0.8304
0.9230
Complementary Pseudo Multimodal Feature for Point Cloud Anomaly Detection
-
0 of 9 row(s) selected.
Previous
Next
3D Anomaly Detection And Segmentation On | SOTA | HyperAI