HyperAI
HyperAI
Home
News
Latest Papers
Tutorials
Datasets
Wiki
SOTA
LLM Models
GPU Leaderboard
Events
Search
About
English
HyperAI
HyperAI
Toggle sidebar
Search the site…
⌘
K
Home
SOTA
Zero-Shot Video Question Answer
Zeroshot Video Question Answer On Msvd Qa
Zeroshot Video Question Answer On Msvd Qa
Metrics
Accuracy
Confidence Score
Results
Performance results of various models on this benchmark
Columns
Model Name
Accuracy
Confidence Score
Paper Title
Repository
BT-Adapter (zero-shot)
67.0
3.6
BT-Adapter: Video Conversation is Feasible Without Video Instruction Tuning
-
VideoGPT+
72.4
3.6
VideoGPT+: Integrating Image and Video Encoders for Enhanced Video Understanding
-
SlowFast-LLaVA-34B
79.9
4.1
SlowFast-LLaVA: A Strong Training-Free Baseline for Video Large Language Models
-
Video-ChatGPT-7B
64.9
3.3
Video-ChatGPT: Towards Detailed Video Understanding via Large Vision and Language Models
-
PPLLaVA-7B
77.1
4.0
PPLLaVA: Varied Video Sequence Understanding With Prompt Guidance
-
Elysium
75.8
3.7
Elysium: Exploring Object-level Perception in Videos via MLLM
-
BT-Adapter (zero-shot)
67.0
3.6
BT-Adapter: Video Conversation is Feasible Without Video Instruction Tuning
-
Video Chat-7B
56.3
2.8
VideoChat: Chat-Centric Video Understanding
-
Flash-VStream
80.3
3.9
Flash-VStream: Memory-Based Real-Time Understanding for Long Video Streams
-
VILA1.5-40B
80.1
-
VILA: On Pre-training for Visual Language Models
-
LLaVA-Mini
70.9
4.0
LLaVA-Mini: Efficient Image and Video Large Multimodal Models with One Vision Token
-
TS-LLaVA-34B
79.4
4.1
TS-LLaVA: Constructing Visual Tokens through Thumbnail-and-Sampling for Training-Free Video Large Language Models
-
IG-VLM-34B
79.6
4.1
An Image Grid Can Be Worth a Video: Zero-shot Video Question Answering Using a VLM
-
LLaMA-VID-7B (2 Token)
69.7
3.7
LLaMA-VID: An Image is Worth 2 Tokens in Large Language Models
-
VideoChat2
70.0
3.9
MVBench: A Comprehensive Multi-modal Video Understanding Benchmark
-
Video LLaMA-7B
51.6
2.5
Video-LLaMA: An Instruction-tuned Audio-Visual Language Model for Video Understanding
-
LinVT-Qwen2-VL (7B)
80.2
4.4
LinVT: Empower Your Image-level Large Language Model to Understand Videos
-
PLLaVA (34B)
79.9
4.2
PLLaVA : Parameter-free LLaVA Extension from Images to Videos for Video Dense Captioning
-
LLaMA Adapter-7B
54.9
3.1
LLaMA-Adapter V2: Parameter-Efficient Visual Instruction Model
-
FrozenBiLM
33.8
-
Zero-Shot Video Question Answering via Frozen Bidirectional Language Models
-
0 of 28 row(s) selected.
Previous
Next
Zeroshot Video Question Answer On Msvd Qa | SOTA | HyperAI