HyperAI
HyperAI
Home
Console
Docs
News
Papers
Tutorials
Datasets
Wiki
SOTA
LLM Models
GPU Leaderboard
Events
Search
About
Terms of Service
Privacy Policy
English
HyperAI
HyperAI
Toggle Sidebar
Search the site…
⌘
K
Command Palette
Search for a command to run...
Console
Home
SOTA
Zero-Shot Semantic Segmentation
Zero Shot Semantic Segmentation On Pascal Voc
Zero Shot Semantic Segmentation On Pascal Voc
Metrics
Inductive Setting hIoU
Transductive Setting hIoU
Results
Performance results of various models on this benchmark
Columns
Model Name
Inductive Setting hIoU
Transductive Setting hIoU
Paper Title
OTSeg+
87.4
94.4
OTSeg: Multi-prompt Sinkhorn Attention for Zero-Shot Semantic Segmentation
OTSeg
84.5
94.2
OTSeg: Multi-prompt Sinkhorn Attention for Zero-Shot Semantic Segmentation
CLIP-RC
88.4
93.0
Exploring Regional Clues in CLIP for Zero-Shot Semantic Segmentation
ZegCLIP
84.3
91.1
ZegCLIP: Towards Adapting CLIP for Zero-shot Semantic Segmentation
MaskCLIP+
-
87.4
Extract Free Dense Labels from CLIP
FreeSeg
-
86.9
FreeSeg: Free Mask from Interpretable Contrastive Language-Image Pretraining for Semantic Segmentation
zsseg
77.5
79.3
A Simple Baseline for Open-Vocabulary Semantic Segmentation with Pre-trained Vision-language Model
STRICT
-
49.8
A Closer Look at Self-training for Zero-Label Semantic Segmentation
CaGNet
-
43.7
Context-aware Feature Generation for Zero-shot Semantic Segmentation
SPNet
-
38.8
Semantic Projection Network for Zero- and Few-Label Semantic Segmentation
ZS5
-
33.8
Zero-Shot Semantic Segmentation
DeOp
80.8
-
Open-Vocabulary Semantic Segmentation with Decoupled One-Pass Network
ZegFormer
73.3
-
Decoupling Zero-Shot Semantic Segmentation
0 of 13 row(s) selected.
Previous
Next
Zero Shot Semantic Segmentation On Pascal Voc | SOTA | HyperAI