HyperAI
Home
News
Latest Papers
Tutorials
Datasets
Wiki
SOTA
LLM Models
GPU Leaderboard
Events
Search
About
English
HyperAI
Toggle sidebar
Search the site…
⌘
K
Home
SOTA
Zero Shot Semantic Segmentation
Zero Shot Semantic Segmentation On Pascal Voc
Zero Shot Semantic Segmentation On Pascal Voc
Metrics
Inductive Setting hIoU
Transductive Setting hIoU
Results
Performance results of various models on this benchmark
Columns
Model Name
Inductive Setting hIoU
Transductive Setting hIoU
Paper Title
Repository
CLIP-RC
88.4
93.0
Exploring Regional Clues in CLIP for Zero-Shot Semantic Segmentation
MaskCLIP+
-
87.4
Extract Free Dense Labels from CLIP
ZegCLIP
84.3
91.1
ZegCLIP: Towards Adapting CLIP for Zero-shot Semantic Segmentation
DeOp
80.8
-
Open-Vocabulary Semantic Segmentation with Decoupled One-Pass Network
SPNet
-
38.8
Semantic Projection Network for Zero- and Few-Label Semantic Segmentation
CaGNet
-
43.7
Context-aware Feature Generation for Zero-shot Semantic Segmentation
OTSeg
84.5
94.2
OTSeg: Multi-prompt Sinkhorn Attention for Zero-Shot Semantic Segmentation
FreeSeg
-
86.9
FreeSeg: Free Mask from Interpretable Contrastive Language-Image Pretraining for Semantic Segmentation
-
OTSeg+
87.4
94.4
OTSeg: Multi-prompt Sinkhorn Attention for Zero-Shot Semantic Segmentation
zsseg
77.5
79.3
A Simple Baseline for Open-Vocabulary Semantic Segmentation with Pre-trained Vision-language Model
ZegFormer
73.3
-
Decoupling Zero-Shot Semantic Segmentation
ZS5
-
33.8
Zero-Shot Semantic Segmentation
STRICT
-
49.8
A Closer Look at Self-training for Zero-Label Semantic Segmentation
0 of 13 row(s) selected.
Previous
Next