HyperAI

Visual Question Answering On Gqa Test2019

Metrics

Accuracy
Binary
Consistency
Distribution
Open
Plausibility
Validity

Results

Performance results of various models on this benchmark

Comparison Table
Model NameAccuracyBinaryConsistencyDistributionOpenPlausibilityValidity
Model 160.9877.3290.775.3646.5584.9396.38
Model 260.5978.4492.667.2844.8385.3896.57
Model 346.5563.2674.577.4631.884.2596.02
Model 464.9282.6394.375.1149.2984.9196.64
Model 559.3777.5388.636.0643.3584.7196.18
Model 659.876.7489.145.1144.8584.296.23
Model 760.1777.1989.615.8345.1484.4696.36
Model 859.2977.3188.945.843.3884.4396.3
Model 937.0356.6163.9628.419.7485.1295.76
Model 1057.3575.0787.615.9441.7184.595.86
vinvl-l-enriching-visual-representation-with64.8582.5994.04.5949.1984.9196.62
Model 1255.072.0983.475.2939.9284.6696.34
bottom-up-and-top-down-attention-for-image49.7466.6478.715.9834.8384.5796.18
Model 1457.8974.5485.455.7343.1984.9996.4
graph-reasoning-networks-for-visual-question61.2278.6990.316.7745.8185.4396.36
Model 1656.9574.6287.715.8141.3684.5795.98
Model 1760.1876.9789.655.2945.3684.4796.33
Model 1863.1778.9493.253.7149.2584.2896.41
Model 1955.6572.8689.189.6940.4685.2796.33
Model 2056.9674.9785.127.1341.0684.8596.38
Model 2160.2776.9990.165.3945.5184.4996.31
Model 2260.0276.3790.055.6345.5984.3496.29
Model 2355.9371.8183.26.0541.9385.0996.01
Model 2459.9379.0993.7210.143.0285.9296.41
Model 2563.277.9189.845.2550.2285.1596.47
Model 2689.391.298.40.087.497.298.9
Model 2759.4377.1189.056.3943.8284.9496.56
Model 2856.1872.8485.465.4241.4784.0496.18
Model 2944.0657.5738.188.3532.1375.1985.94
Model 3059.5477.9889.216.0143.2684.9496.24
Model 3161.177.9991.085.5246.1984.8296.36
Model 3256.6573.6584.356.0741.6484.3795.94
Model 3356.5973.084.74.6842.1184.8696.4
Model 3451.2269.3682.446.4535.283.8296.12
Model 3560.1477.1589.585.8145.1284.4796.36
Model 3657.176.091.710.5240.4185.5896.16
Model 3761.0977.8488.925.6846.385.4996.43
Model 3860.6778.0289.816.4145.3684.8496.31
Model 3953.5770.1581.145.3238.9484.6796.36
Model 4061.0578.0289.775.2446.0684.9596.5
Model 4162.4480.2894.365.3346.6984.9196.46
vinvl-making-visual-representations-matter-in64.6582.6394.354.7248.7784.9896.62
Model 4357.2174.4687.65.641.9984.8796.2
Model 4417.8236.0562.419.991.7434.8435.78
Model 4554.1569.382.365.4140.7985.1595.99
Model 4658.0676.690.967.641.785.2796.31
lxmert-learning-cross-modality-encoder62.7179.7993.16.4247.6485.2196.36
Model 4859.8178.0291.436.043.7584.7796.5
Model 4928.942.9451.6993.0816.6274.8188.86
Model 5055.772.8883.525.3240.5384.8196.39
Model 5157.6575.2287.355.4842.1484.7396.18
Model 5240.361.1874.1140.4421.8886.1396.14
Model 5370.2377.586.941.4963.8283.7796.65
Model 5457.1475.0787.365.2941.3184.4995.87
Model 5548.9763.8583.8513.7235.8383.9395.62
Model 5659.1276.6988.95.643.684.7896.43
Model 5756.1673.5684.995.8740.884.8396.4
Model 5853.3170.4180.336.438.2384.3295.99
Model 5948.4465.0281.1917.7933.8185.2996.15
Model 6060.0776.8489.326.2145.2784.5596.35
Model 6136.7555.2469.9340.8420.4484.1395.1
Model 6260.4277.1289.696.0345.6884.5696.35
Model 6363.9480.8491.544.6949.0384.7496.56
Model 6451.8767.9980.26.7737.6484.3596.25
Model 6560.3777.0989.776.4345.6184.5696.22
Model 6652.1969.1578.345.6937.2283.4495.45
Model 6772.1481.1690.962.3964.1984.8196.77
Model 6861.1278.0791.135.5546.1684.896.36
Model 6960.9377.8390.35.7446.0184.6996.35
Model 7060.5176.8788.28.4846.0685.1996.15
Model 7149.2867.5983.6814.2833.1283.4194.95
Model 7276.0484.4691.473.6868.683.7596.42
Model 7345.8664.7470.578.3829.286.1396.61
Model 7441.6355.1282.2113.0129.7377.492.27
Model 7561.4978.488.685.746.5684.8596.33
Model 7655.4172.8783.065.4839.9984.7496.35
Model 7726.4545.6955.2311.499.4750.9360.81
Model 7853.8972.5287.478.6637.4485.0596.39
Model 7955.5772.3983.3210.1840.7484.2496.15
Model 8060.8978.0793.025.3145.7384.0596.0
Model 8160.8779.1292.618.5644.7685.6396.35
Model 8231.2447.954.0413.9816.6684.3184.33
Model 8354.0671.2381.595.3438.9184.4896.16
Model 8460.777.4189.656.0945.9684.5596.37
Model 8547.7266.2884.1619.0531.3484.5295.45
Model 8649.2766.5778.516.9134.084.5895.78
Model 8741.0761.968.6817.9322.6987.396.39
Model 8851.5167.8279.76.1637.1183.6995.82
Model 8956.0973.485.115.1440.8284.7996.37
Model 9056.1172.6585.515.4241.5284.3696.25
Model 9157.7975.3788.35.6542.2684.8596.11
Model 9262.4580.9193.955.3646.1584.1596.33
Model 9358.9176.0889.526.9343.7584.5296.18
Model 9456.9575.0190.499.541.0285.4696.37
Model 9560.8378.992.495.5444.8984.5596.19
lxmert-learning-cross-modality-encoder60.3377.1689.595.6945.4784.5396.35
Model 9760.9578.4189.084.8645.5484.2796.35
Model 9856.3874.8491.716.3240.0983.7695.43
Model 9958.275.9188.255.8142.5784.7296.08
Model 10056.2873.7386.865.7840.8784.296.01
Model 10157.7775.7886.855.3641.8684.9796.44
Model 10258.7276.489.586.5843.1184.6896.21
Model 10342.7561.2163.517.6326.4584.295.99
Model 10473.3379.6877.022.4667.7383.796.36
Model 10554.7972.4286.16.0139.2384.5595.92
Model 10652.368.4684.3612.5438.0485.296.2
Model 10759.8476.7989.526.0644.8984.7296.2
Model 10860.1876.8489.775.6545.4884.696.37
Model 10943.8459.2467.7110.9930.2484.0195.32
Model 11059.7277.9789.436.2543.6184.8996.55
Model 11160.2877.1389.475.3845.4184.4596.33
Model 11258.1276.3988.015.6542.084.896.06
Model 11358.8875.0784.645.5444.5884.8696.23
Model 11460.0176.7789.176.2845.2184.4696.35
Model 11559.0676.0789.816.1444.0482.7693.82
Model 11658.4277.3990.297.8641.6784.5395.57
Model 11755.3572.6584.175.2240.0884.5696.32
Model 11853.8568.4480.25.8440.9785.1996.28
Model 11954.9471.782.715.140.1484.7896.4
Model 12073.8180.891.761.767.6483.996.73
Model 12167.5580.4593.832.7856.1684.1696.53
Model 12257.0773.7784.684.742.3384.8196.48
Model 12356.073.987.166.0240.284.4596.01
Model 12457.0174.7887.746.0641.3284.2596.03
Model 12552.0267.3580.445.6438.583.9495.75
Model 12674.0382.1289.01.2966.8983.5896.76
Model 12747.3858.7673.716.2937.3481.7594.55