HyperAI
HyperAI
Home
Console
Docs
News
Papers
Tutorials
Datasets
Wiki
SOTA
LLM Models
GPU Leaderboard
Events
Search
About
Terms of Service
Privacy Policy
English
HyperAI
HyperAI
Toggle Sidebar
Search the site…
⌘
K
Command Palette
Search for a command to run...
Console
Home
SOTA
Visual Object Tracking
Visual Object Tracking On Tnl2K
Visual Object Tracking On Tnl2K
Metrics
AUC
Results
Performance results of various models on this benchmark
Columns
Model Name
AUC
Paper Title
MCITrack-L384
65.3
Exploring Enhanced Contextual Information for Video-Level Object Tracking
MCITrack-B224
62.9
Exploring Enhanced Contextual Information for Video-Level Object Tracking
LoRAT-g-378
62.7
Tracking Meets LoRA: Faster Training, Larger Model, Stronger Performance
LoRAT-L-378
62.3
Tracking Meets LoRA: Faster Training, Larger Model, Stronger Performance
ODTrack-L
61.7
ODTrack: Online Dense Temporal Token Learning for Visual Tracking
ARTrackV2-L
61.6
ARTrackV2: Prompting Autoregressive Tracker Where to Look and How to Describe
ODTrack-B
60.9
ODTrack: Online Dense Temporal Token Learning for Visual Tracking
RTracker-L
60.6
RTracker: Recoverable Tracking via PN Tree Structured Memory
ARTrack-L
60.3
Autoregressive Visual Tracking
SeqTrack-L384
57.8
Unified Sequence-to-Sequence Learning for Single- and Multi-Modal Visual Object Tracking
MixFormerV2-B
57.4
-
DropTrack
56.9
DropMAE: Learning Representations via Masked Autoencoders with Spatial-Attention Dropout for Temporal Matching Tasks
AdaSwitcher
-
Towards More Flexible and Accurate Object Tracking with Natural Language: Algorithms and Benchmark
0 of 13 row(s) selected.
Previous
Next
Visual Object Tracking On Tnl2K | SOTA | HyperAI