HyperAI
HyperAI
Home
News
Latest Papers
Tutorials
Datasets
Wiki
SOTA
LLM Models
GPU Leaderboard
Events
Search
About
English
HyperAI
HyperAI
Toggle sidebar
Search the site…
⌘
K
Home
SOTA
Visual Object Tracking
Visual Object Tracking On Otb 2015
Visual Object Tracking On Otb 2015
Metrics
AUC
Results
Performance results of various models on this benchmark
Columns
Model Name
AUC
Paper Title
Repository
SA-Siam
0.657
A Twofold Siamese Network for Real-Time Object Tracking
-
KeepTrack
0.709
Learning Target Candidate Association to Keep Track of What Not to Track
-
SeqTrack-L384
0.683
Unified Sequence-to-Sequence Learning for Single- and Multi-Modal Visual Object Tracking
-
SiamVGG
0.654
SiamVGG: Visual Tracking using Deeper Siamese Networks
-
ODTrack-B
0.723
ODTrack: Online Dense Temporal Token Learning for Visual Tracking
-
HIPTrack
0.71
HIPTrack: Visual Tracking with Historical Prompts
-
GradNet
-
GradNet: Gradient-Guided Network for Visual Object Tracking
-
TRASFUST
0.701
Tracking-by-Trackers with a Distilled and Reinforced Model
-
ODTrack-L
0.724
ODTrack: Online Dense Temporal Token Learning for Visual Tracking
-
ASRCF
0.692
Visual Tracking via Adaptive Spatially-Regularized Correlation Filters
CFNet
0.568
End-to-end representation learning for Correlation Filter based tracking
-
SAMURAI-L
0.715
SAMURAI: Adapting Segment Anything Model for Zero-Shot Visual Tracking with Motion-Aware Memory
-
STMTrack
0.719
STMTrack: Template-free Visual Tracking with Space-time Memory Networks
-
UniTrack_DCF
0.618
Do Different Tracking Tasks Require Different Appearance Models?
-
SE-SiamFC
0.66
Scale Equivariance Improves Siamese Tracking
-
AAA
0.70
AAA: Adaptive Aggregation of Arbitrary Online Trackers with Theoretical Performance Guarantee
-
PiVOT-L
0.712
Improving Visual Object Tracking through Visual Prompting
-
0 of 17 row(s) selected.
Previous
Next
Visual Object Tracking On Otb 2015 | SOTA | HyperAI