Visual Object Tracking On Lasot Ext
Metrics
AUC
Precision
Results
Performance results of various models on this benchmark
Comparison Table
Model Name | AUC | Precision |
---|---|---|
dropmae-masked-autoencoders-with-spatial | 52.7 | 60.2 |
tracking-meets-lora-faster-training-larger | 56.5 | 64.9 |
odtrack-online-dense-temporal-token-learning | 53.9 | - |
odtrack-online-dense-temporal-token-learning | 52.4 | - |
learning-historical-status-prompt-for | 53.0 | 60.6 |
a-distractor-aware-memory-for-visual-object | 60.9 | - |
autoregressive-visual-tracking | 52.8 | 59.7 |
exploring-enhanced-contextual-information-for-1 | 55.7 | 62.9 |
universal-instance-perception-as-object | 56.2 | 63.8 |
learning-target-candidate-association-to-keep | 48.2 | - |
exploring-enhanced-contextual-information-for-1 | 54.6 | 62.1 |
artrackv2-prompting-autoregressive-tracker | 53.4 | 60.2 |
tracking-meets-lora-faster-training-larger | 56.6 | 65.1 |
samurai-adapting-segment-anything-model-for-1 | 61.0 | 72.2 |
joint-feature-learning-and-relation-modeling | 50.6 | 57.6 |
seqtrack-sequence-to-sequence-learning-for | 50.7 | 57.5 |
high-performance-long-term-tracking-with-meta | 41.4 | 47.3 |
rtracker-recoverable-tracking-via-pn-tree | 54.9 | 62.7 |