HyperAI
HyperAI
Home
Console
Docs
News
Papers
Tutorials
Datasets
Wiki
SOTA
LLM Models
GPU Leaderboard
Events
Search
About
Terms of Service
Privacy Policy
English
HyperAI
HyperAI
Toggle Sidebar
Search the site…
⌘
K
Command Palette
Search for a command to run...
Console
Home
SOTA
Visual Object Tracking
Visual Object Tracking On Lasot
Visual Object Tracking On Lasot
Metrics
AUC
Results
Performance results of various models on this benchmark
Columns
Model Name
AUC
Paper Title
MCITrack-L384
76.6
Exploring Enhanced Contextual Information for Video-Level Object Tracking
LoRAT-g-378
76.2
Tracking Meets LoRA: Faster Training, Larger Model, Stronger Performance
MCITrack-B224
75.3
Exploring Enhanced Contextual Information for Video-Level Object Tracking
DAM4SAM
75.1
A Distractor-Aware Memory for Visual Object Tracking with SAM2
LoRAT-L-378
75.1
Tracking Meets LoRA: Faster Training, Larger Model, Stronger Performance
RTracker-L
74.7
RTracker: Recoverable Tracking via PN Tree Structured Memory
SAMURAI-L
74.2
SAMURAI: Adapting Segment Anything Model for Zero-Shot Visual Tracking with Motion-Aware Memory
ODTrack-L
74.0
ODTrack: Online Dense Temporal Token Learning for Visual Tracking
ARTrackV2-L
73.6
ARTrackV2: Prompting Autoregressive Tracker Where to Look and How to Describe
PiVOT-L
73.4
Improving Visual Object Tracking through Visual Prompting
MixViT-L(ConvMAE)
73.3
MixFormer: End-to-End Tracking with Iterative Mixed Attention
ODTrack-B
73.2
ODTrack: Online Dense Temporal Token Learning for Visual Tracking
ARTrack-L
73.1
Autoregressive Visual Tracking
HIPTrack
72.7
HIPTrack: Visual Tracking with Historical Prompts
SeqTrack-L384
72.5
Unified Sequence-to-Sequence Learning for Single- and Multi-Modal Visual Object Tracking
UNINEXT-L
72.4
Universal Instance Perception as Object Discovery and Retrieval
NeighborTrack-OSTrack
72.2
NeighborTrack: Improving Single Object Tracking by Bipartite Matching with Neighbor Tracklets
UNINEXT-H
72.2
Universal Instance Perception as Object Discovery and Retrieval
MITS
72.0
Integrating Boxes and Masks: A Multi-Object Framework for Unified Visual Tracking and Segmentation
DropTrack
71.8
DropMAE: Learning Representations via Masked Autoencoders with Spatial-Attention Dropout for Temporal Matching Tasks
0 of 43 row(s) selected.
Previous
Next