HyperAI
HyperAI
Home
News
Latest Papers
Tutorials
Datasets
Wiki
SOTA
LLM Models
GPU Leaderboard
Events
Search
About
English
HyperAI
HyperAI
Toggle sidebar
Search the site…
⌘
K
Home
SOTA
Video Super-Resolution
Video Super Resolution On Msu Video Upscalers
Video Super Resolution On Msu Video Upscalers
Metrics
LPIPS
PSNR
SSIM
Results
Performance results of various models on this benchmark
Columns
Model Name
LPIPS
PSNR
SSIM
Paper Title
Repository
SwinIR-Real-B
0.183
28.86
0.830
SwinIR: Image Restoration Using Swin Transformer
-
ESRGAN
-
27.29
0.936
ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks
-
LGFN
-
27.42
0.939
Local-Global Fusion Network for Video Super-Resolution
VEAI-GCG-5
0.292
31.01
0.859
-
-
ESPCN
-
26.25
0.926
Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network
-
VEAI-ALQ-13
0.206
31.00
0.890
-
-
VEAI-ASD-2
0.218
30.55
0.868
-
-
VEAI-GHQ-5
0.210
30.55
0.869
-
-
RealEsrgan-F
0.185
28.82
0.850
Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data
-
Davinci SupScl
0.369
30.10
0.854
-
-
GP-Lines
0.212
29.01
0.822
-
-
DBVSR
-
27.28
0.937
Deep Blind Video Super-resolution
-
VEAI-AD-2
0.195
31.15
0.898
-
-
BasicVsr++RD
0.334
30.98
0.881
BasicVSR++: Improving Video Super-Resolution with Enhanced Propagation and Alignment
-
iSeeBetter
-
27.42
0.939
iSeeBetter: Spatio-Temporal Video Super Resolution using Recurrent-Generative Back-Projection Networks
VEAI-AAM-10
0.278
30.76
0.838
-
-
BSRGAN
0.177
29.27
0.836
Designing a Practical Degradation Model for Deep Blind Image Super-Resolution
-
SRMD
0.349
30.96
0.852
Learning a Single Convolutional Super-Resolution Network for Multiple Degradations
-
SwinIR-Real-S
0.189
28.55
0.845
SwinIR: Image Restoration Using Swin Transformer
-
RealEsrgan
0.181
29.14
0.855
Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data
-
0 of 48 row(s) selected.
Previous
Next
Video Super Resolution On Msu Video Upscalers | SOTA | HyperAI