HyperAI
HyperAI
Home
Console
Docs
News
Papers
Tutorials
Datasets
Wiki
SOTA
LLM Models
GPU Leaderboard
Events
Search
About
Terms of Service
Privacy Policy
English
HyperAI
HyperAI
Toggle Sidebar
Search the site…
⌘
K
Command Palette
Search for a command to run...
Console
Home
SOTA
Video Object Tracking
Video Object Tracking On Nv Vot211
Video Object Tracking On Nv Vot211
Metrics
AUC
Precision
Results
Performance results of various models on this benchmark
Columns
Model Name
AUC
Precision
Paper Title
MCITrack_L384
41.50
54.20
Exploring Enhanced Contextual Information for Video-Level Object Tracking
ProContEXT
40.10
54.50
ProContEXT: Exploring Progressive Context Transformer for Tracking
ODTrack
39.60
55.80
ODTrack: Online Dense Temporal Token Learning for Visual Tracking
KeepTrack
39.59
55.50
Learning Target Candidate Association to Keep Track of What Not to Track
TATrack-L
39.29
53.94
Target-Aware Tracking with Long-term Context Attention
ToMP-50
39.25
53.01
Transforming Model Prediction for Tracking
Mixformer(ConvMAE)
39.23
54.20
MixFormer: End-to-End Tracking with Iterative Mixed Attention
AiATrack
38.91
53.47
AiATrack: Attention in Attention for Transformer Visual Tracking
OSTrack-384
38.59
53.06
Joint Feature Learning and Relation Modeling for Tracking: A One-Stream Framework
Neighbor- Track(OSTrack)
38.32
52.54
NeighborTrack: Improving Single Object Tracking by Bipartite Matching with Neighbor Tracklets
STARK
38.26
51.37
Learning Spatio-Temporal Transformer for Visual Tracking
SLT-TransT
37.22
51.70
Towards Sequence-Level Training for Visual Tracking
STMTrack
36.84
50.34
STMTrack: Template-free Visual Tracking with Space-time Memory Networks
TransT
36.79
51.97
Transformer Tracking
TrDiMP
36.66
50.68
Transformer Meets Tracker: Exploiting Temporal Context for Robust Visual Tracking
RTS
36.20
53.68
Robust Visual Tracking by Segmentation
KYS
36.02
48.13
Know Your Surroundings: Exploiting Scene Information for Object Tracking
ARTrack-L
35.92
51.64
Autoregressive Visual Tracking
DiMP-50
35.89
48.68
Learning Discriminative Model Prediction for Tracking
SiamBAN-ACM
35.80
48.31
Learning to Fuse Asymmetric Feature Maps in Siamese Trackers
0 of 44 row(s) selected.
Previous
Next
Video Object Tracking On Nv Vot211 | SOTA | HyperAI