HyperAI
HyperAI
Home
Console
Docs
News
Papers
Tutorials
Datasets
Wiki
SOTA
LLM Models
GPU Leaderboard
Events
Search
About
Terms of Service
Privacy Policy
English
HyperAI
HyperAI
Toggle Sidebar
Search the site…
⌘
K
Command Palette
Search for a command to run...
Console
Home
SOTA
Video Object Detection
Video Object Detection On Imagenet Vid
Video Object Detection On Imagenet Vid
Metrics
MAP
Results
Performance results of various models on this benchmark
Columns
Model Name
MAP
Paper Title
YOLOV++
93.2
Practical Video Object Detection via Feature Selection and Aggregation
DiffusionVID (Swin-B)
92.5
DiffusionVID: Denoising Object Boxes with Spatio-temporal Conditioning for Video Object Detection
Ours (Def. DETR + SwinB)
91.3
Objects do not disappear: Video object detection by single-frame object location anticipation
VSTAM
91.1
Video Sparse Transformer With Attention-Guided Memory for Video Object Detection
TGBFormer (Swin B)
90.3
TGBFormer: Transformer-GraphFormer Blender Network for Video Object Detection
TransVOD (Swin Base)
90.1
TransVOD: End-to-End Video Object Detection with Spatial-Temporal Transformers
PTSEFormer (ResNet-101)
88.1
PTSEFormer: Progressive Temporal-Spatial Enhanced TransFormer Towards Video Object Detection
Ours (Def. DETR + R101)
87.9
Objects do not disappear: Video object detection by single-frame object location anticipation
YOLOV
87.5
YOLOV: Making Still Image Object Detectors Great at Video Object Detection
Ours (Faster RCNN + R101)
87.2
Objects do not disappear: Video object detection by single-frame object location anticipation
DiffusionVID (ResNet-101)
87.1
DiffusionVID: Denoising Object Boxes with Spatio-temporal Conditioning for Video Object Detection
DAFA-F (ResNeXt-101)
85.9
DAFA: Diversity-Aware Feature Aggregation for Attention-Based Video Object Detection
ClipVID
85.8
Identity-Consistent Aggregation for Video Object Detection
HVRNet (ResNeXt101-32x4d)
85.5
Mining Inter-Video Proposal Relations for Video Object Detection
MEGA (ResNeXt101)
85.4
Memory Enhanced Global-Local Aggregation for Video Object Detection
BoxMask(ResNeXt101)
84.8
BoxMask: Revisiting Bounding Box Supervision for Video Object Detection
DAFA-F (ResNet-101)
84.5
DAFA: Diversity-Aware Feature Aggregation for Attention-Based Video Object Detection
SELSA (ResNeXt-101)
84.3
Sequence Level Semantics Aggregation for Video Object Detection
Temporal ROI Align (ResNeXt101)
84.3
Temporal RoI Align for Video Object Recognition
REPP + SELSA (ResNet-101)
84.2
Robust and Efficient Post-Processing for Video Object Detection (REPP)
0 of 33 row(s) selected.
Previous
Next
Video Object Detection On Imagenet Vid | SOTA | HyperAI